This study focused on the formulation and characterization of silver nanoparticles (AgNP) functionalized with d-limonene. The nanoparticles were functionalized by phase inversion and the synthesis of the nanoparticles was performed in situ; particle size was determined by laser diffraction, zeta potential and optical colloidal stability using Multiscan 20 for a period of 24 hours at 37 °C; the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the formulated material on Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 29213, Klebsiella oxytoca ATCC 700324, Enterococcus casseliflavus ATCC 700327, Escherichia coli BLEE, carbapenem-resistant Pseudomona aeruginosa were determined. The nanoparticles showed colloidal stability at a d-limonene concentration of 3.93%, silver ions at 1.61 × 10−3%, non-ionic adjuvant at 24% and ascorbic acid at 5.88%; citric acid/citrate (1:1) 0.48M for a pH of 4.5 was used as a buffer system. The formulation was classified as a polydisperse system (PD = 0.0851), with a zeta potential of −11.6 mV and average particle size of 81.5 ± 0.9 nm. A particle migration velocity of −0.199 ± 0.006 mm∙h−1, a constant transmission profile and backscattering profile with variations of 10% were evidenced, which represents a stable formulation. The nanoparticles presented an MIC and an MBC of 28 μg∙mL−1 (5.6 × 10−2% d-limonene and 4.7 × 10−5% AgNP) against all tested bacteria.
Small watershed ecological compensation is an important economic means to solve the contradiction between protecting the ecological environment and developing the economy. Taking the Changtian small watershed in the Xixiu District of Anshun City as an example, this paper uses the ecological service function value method to roughly calculate the ecological service function value of the small watershed ecosystem: the ecological service function value of the Changtian small watershed is 913.586 million yuan, and the total amount of ecological compensation is 11.6245 million yuan, of which the farmland system compensation is 1.3194 million yuan, the forest system compensation is 7.5336 million yuan, and the water system compensation is 256,000 yuan, The compensation for the fruit forest system is 2,515,500 yuan. Based on the value of ecosystem service function, the compensated and non-compensated ecosystem service functions are distinguished, and the equivalent factors that different ecosystems can provide compensated ecosystem functions are expressed, so that the determination of ecological compensation amount is scientific and more accurate, and then provides a basis for the determination of ecological compensation standard of the small watershed.
Water splitting has gained significant attention as a means to produce clean and sustainable hydrogen fuel through the electrochemical or photoelectrochemical decomposition of water. Efficient and cost-effective water splitting requires the development of highly active and stable catalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Carbon nanomaterials, including carbon nanotubes, graphene, and carbon nanofibers, etc., have emerged as promising candidates for catalyzing these reactions due to their unique properties, such as high surface area, excellent electrical conductivity, and chemical stability. This review article provides an overview of recent advancements in the utilization of carbon nanomaterials as catalysts or catalyst supports for the OER and HER in water splitting. It discusses various strategies employed to enhance the catalytic activity and stability of carbon nanomaterials, such as surface functionalization, hybridization with other active materials, and optimization of nanostructure and morphology. The influence of carbon nanomaterial properties, such as defect density, doping, and surface chemistry, on electrochemical performance is also explored. Furthermore, the article highlights the challenges and opportunities in the field, including scalability, long-term stability, and integration of carbon nanomaterials into practical water splitting devices. Overall, carbon nanomaterials show great potential for advancing the field of water splitting and enabling the realization of efficient and sustainable hydrogen production.
This study examines the impact of state highway construction contracts on state spending efficiency controlling for production structure, service demands, and situational factors. The theoretical argument is that because highway construction projects are relatively large in scale, complex, and can be monitored through objective performance measurement, state highway construction programs may save government production costs through contracts. Contracting helps highway producers achieve efficiency by optimizing production size based on workload and task complexity. The unit of analysis is 48 state governments’ highway construction contracts from 1998 to 2008. Through a two-stage analysis method including a Total Function Productivity (TFP) index and system dynamic panel data analysis, the results suggest that highway construction contracts enhance state highway spending efficiency, especially for large-scale construction projects.
Since the reform and opening up, China has continuously pushed forward the administrative system reform, adapted to the national conditions and the requirements of the times, and achieved fruitful results. Generally speaking, the successive administrative system reforms have focused on the government and the adjustment of the dynamic relationship between government-market-society. Due to the special characteristics of local foreign affairs departments in the administrative system, the successive reforms have provided less guidance to them, and related research is also relatively lacking. However, from a practical point of view, local foreign affairs offices have long followed the pace of administrative system reform and carried out a series of adjustments and optimizations. As an important element of administrative system reform, the functional transformation of local foreign affairs offices has been continuously promoted along with institutional reform. This research, which is mainly based on talks and supplemented by document comparisons, aims to study the development results and experiences of the Foreign Affairs Office of Shaanxi Province in the context of administrative system reform, and tries to provide a case study for the administrative system reform of local foreign affairs departments.
Leadership behavior is a critical component of effective management, significantly influencing organizational success. While extensive research has examined key success factors in road management, the specific role of leadership behaviors in road usage charging (RUC) management remains underexplored. This study addresses this gap by identifying and analyzing leadership behavior dimensions and their impact on management performance within the RUC context. Using a mixed-methods approach, focus group discussions with industry practitioners were conducted to define eight leadership behavior dimensions: Central-Level Leadership Guidance (LE1), Local-Level Leadership Guidance (LE2), Central-Level Leadership Commitment (LE3), Local-Level Leadership Commitment (LE4), Subordinate Understanding from Central-Level Leadership (LE5), Subordinate Understanding from Local-Level Leadership (LE6), Work Motivation (LE7), and Understanding Rights and Obligations (LE8). These dimensions were further validated through a quantitative survey distributed to 138 professionals involved in RUC management in Vietnam, with the data analyzed using structural equation modeling (SEM) and partial least squares (PLS) estimation. The findings revealed that LE3 (Central-Level Leadership Commitment) had the strongest direct impact on management performance (MP) and mediated the relationships between other leadership dimensions and management outcomes. This study contributes to the theoretical understanding of leadership in RUC management by highlighting the centrality of leadership commitment and offering practical insights for improving leadership practices to enhance organizational performance in infrastructure management.
Copyright © by EnPress Publisher. All rights reserved.