Metal organic framework is a class of hybrid network of supramolecular solid materials comprised of a large number of inorganic and organic linkers all bounded to metal ions in a well-organized fashion. This type of compounds possess a greater surface area with an advantage of changing pore sizes, diversified and beautiful structure which withdrew an intense interest in this field. In the present review articles, the structural aspects, classification, methods of synthesis, various factors affecting the synthesis and stability, properties and applications have been discussed. Recent advances in the field and new directions to explore the future scope and applications of MOFs have been incorporated in this article to provide current status of the field.
This paper aims to verify the possibility of utilising water-in-diesel emulsions (WiDE) as an alternative drop-in fuel for diesel engines. An 8% WiDE was produced to be tested in a four-stroke, indirect injection (IDI) diesel engine and compared to EN590 diesel fuel. An eddy current brake and an exhaust gas analyser were utilised to measure different engine parameters such as torque, fuel consumption, and emissions at different engine loads. The results show that the engine running on emulsified fuel leads to a reduction in torque and power, an increase in the specific fuel consumption, and slightly better thermal efficiency. The highest percentual increment of thermal efficiency for WiDE is obtained at 100% engine load, 5.68% higher compared to diesel. The emissions of nitric oxide (NO) and carbon dioxide (CO2) are reduced, but carbon monoxide (CO) and hydrocarbons (HC) emissions are increased, compared to traditional diesel fuel. The most substantial decrease in NO and CO2 levels was achieved at 75% engine load with 33.86% and 25.08% respectively, compared to diesel.
This research study explores the addition of chromium (Cr6+) ions as a nucleating agent in the alumino-silicate-glass (ASG) system (i.e., Al2O3-SiO2-MgO-B2O3-K2O-F). The important feature of this study is the induction of nucleation/crystallization in the base glass matrix on addition of Cr6+ content under annealing heat treatment (600 ± 10 °C) only. The melt-quenched glass is found to be amorphous, which in the presence of Cr6+ ions became crystalline with a predominant crystalline phase, Spinel (MgCr2O4). Microstructural experiment revealed the development of 200–500 nm crystallite particles in Cr6+-doped glass-ceramic matrix, and such type microstructure governed the mechanical properties. The machinability of the Cr-doped glass-ceramic was thereby higher compared to base alumino-silicate glass (ASG). From the nano-indentation experiment, the Young’s modulus was estimated 25(±10) GPa for base glass and increased to 894(±21) GPa for Cr-doped glass ceramics. Similarly, the microhardness for the base glass was 0.6(±0.5) GPa (nano-indentation measurements) and 3.63(±0.18) GPa (micro-indentation measurements). And that found increased to 8.4(±2.3) (nano-indentation measurements) and 3.94(±0.20) GPa (micro-indentation measurements) for Cr-containing glass ceramic.
With the progress of science and technology, the research and development of silver nanoparticles has also developed. This paper attempts to prepare a silver nanoparticle by electrolyzing AgNO3 solution with electrochemical reduction method and citric acid as a complexing agent in a certain current and time. The crystal morphology and sample purity of silver nanoparticles were analyzed by X-ray diffractometer. The crystal structure of the nanoparticles was analyzed by scanning electron microscopy (SEM). The crystal structure of the nanoparticles was analyzed by X-ray diffraction. The particle size distribution of the particles was in the range of 125-199 nm, and the carbon paste electrode was modified with the prepared silver nanoparticles. The electrocatalytic activity of the carbon paste electrode was preliminarily explored.
In order to understand the finishing effect of Waterborne Acrylic Paint under different painting methods and amount, bamboo-laminated lumber for furniture was coated with waterborne acrylic paint, then the effects of different painting methods and amount on the drying rate, smoothness, hardness, adhesion and wear resistance of the paint film were investigated. Further, the mechanism of film formation was described by thermal property analysis using thermogravimetry and differential scanning calorimeter. The results show that different painting methods have little effect on film properties, the drying time of primer and topcoat are not affected by them, which is 8/8.5 min for primer surface/solid and 6.5/7 min for topcoats. The film surface hardness and adhesion can reach B and 0 grade, the best wear resistance of the film is 51.24 mg·100 r−1 when using one-layer primer one-layer topcoat. Different coating amount has great influence on film properties, the drying speed of the film increases with the increase of the painting amount. The film properties reach the best when the painting amount is 80 g/m2, while too little painting amount leads to the decrease of hardness, and too much leads to the wear resistance weaken. Thermal analysis of the primer and topcoat show that water decomposition occurs at 100 ℃ and thermal decomposition of organic components occur at 350 ℃. Topcoats have better thermal stability than primers higher than that of topcoat, the topcoat displayed better thermal stability than the primer.
Copyright © by EnPress Publisher. All rights reserved.