The proposed research work encompasses implications for infrastructure particularly the cybersecurity as an essential in soft infrastructure, and policy making particularly on secure access management of infrastructure governance. In this study, we introduce a novel parameter focusing on the timestamp duration of password entry, enhancing the algorithm titled EPSBalgorithmv01 with seven parameters. The proposed parameter incorporates an analysis of the historical time spent by users entering their passwords, employing ARIMA for processing. To assess the efficacy of the updated algorithm, we developed a simulator and employed a multi-experimental approach. The evaluation utilized a test dataset comprising 617 authentic records from 111 individuals within a selected company spanning from 2017 to 2022. Our findings reveal significant advancements in EPSBalgorithmv01 compared to its predecessor namely EPSBalgorithmv00. While EPSBalgorithmv00 struggled with a recognition rate of 28.00% and a precision of 71.171, EPSBalgorithmv01 exhibited a recognition rate of 17% with a precision of 82.882%. Despite a decrease in recognition rate, EPSBalgorithmv01 demonstrates a notable improvement of approximately 14% over EPSBalgorithmv00.
This paper aims to show the crisis of contemporary criminal systems, however legislative excess of stipulating the penalty of imprisonment, as a penalty depriving freedom, while sometimes stipulating the penalty of imprisonment is mandatory, rather combining it with other penalties, and more than that, depriving the judge of his discretionary power in determining the punishment, this threatens the theory of individualized punishment in a fatal way, so as a result, prisons are overcrowded with inmates, which places a heavy burden on the state from an economic perspective that exhausts and drains its budget, while there is also a social cost of the prison sentence, paid by the prisoner’s family and close circle, moreover the greatest cost is the failure of the penal system to perform its role towards the prisoner by reforming and rehabilitating, therefore, this paper focuses on presenting the causes of the problem and its negative repercussions, trying to find some solutions, by presenting alternatives to the prison sentence, while expanding the view to include some criminal systems, such as the Islamic criminal system and its decision on the penalty of exile.
This study explores the determinants of control loss in eating behaviors, employing decision tree regression analysis on a sample of 558 participants. Guided by Self-Determination Theory, the findings highlight amotivation (β = 0.48, p < 0.001) and external regulation (β = 0.36, p < 0.01) as primary predictors of control loss, with introjected regulation also playing a significant role (β = 0.24, p < 0.05). Consistent with Self-Determination Theory, the results emphasize the critical role of autonomous motivation and its deficits in shaping self-regulation. Physical characteristics, such as age and weight, exhibited limited predictive power (β = 0.12, p = 0.08). The decision tree model demonstrated reliability in explaining eating behavior patterns, achieving an R2 value of 0.39, with a standard deviation of 0.11. These results underline the importance of addressing motivational deficits in designing interventions aimed at improving self-regulation and promoting healthier eating behaviors.
Soil salinization is a difficult challenge for agricultural productivity and environmental sustainability, particularly in arid and semi-arid coastal regions. This study investigates the spatial variability of soil electrical conductivity (EC) and its relationship with key cations and anions (Na+, K+, Ca2+, Mg2+, Cl⁻, CO32⁻, HCO3⁻, SO42⁻) along the southeastern coast of the Caspian Sea in Iran. Using a combination of field-based soil sampling, laboratory analyses, and Landsat 8 spectral data, linear Multiple Linear Regression and Partial Least Squares Regression (MLR, PLSR) and nonlinear Artifician Neural Network and Support Vector Machine (ANN, SVM) modeling approaches were employed to estimate and map soil EC. Results identified Na+ and Cl⁻ as the primary contributors to salinity (r = 0.78 and r = 0.88, respectively), with NaCl salts dominating the region’s soil salinity dynamics. Secondary contributions from Potassium Chloride KCl and Magnesium Chloride MgCl2 were also observed. Coastal landforms such as lagoon relicts and coastal plains exhibited the highest salinity levels, attributed to geomorphic processes and anthropogenic activities. Among the predictive models, the SVM algorithm outperformed others, achieving higher R2 values and lower RMSE (RMSETest = 27.35 and RMSETrain = 24.62, respectively), underscoring its effectiveness in capturing complex soil-environment interactions. This study highlights the utility of digital soil mapping (DSM) for assessing soil salinity and provides actionable insights for sustainable land management, particularly in mitigating salinity and enhancing agricultural practices in vulnerable coastal systems.
Copyright © by EnPress Publisher. All rights reserved.