This review provides an overview of the importance of nanoparticles in various fields of science, their classification, synthesis, reinforcements, and applications in numerous areas of interest. Normally nanoparticles are particles having a size of 100 nm or less that would be included in the larger category of nanoparticles. Generally, these materials are either 0-D, 1-D, 2-D, or 3-D. They are classified into groups based on their composition like being organic and inorganic, shapes, and sizes. These nanomaterials are synthesized with the help of top-down bottom and bottom-up methods. In case of plant-based synthesis i.e., the synthesis using plant extracts is non-toxic, making plants the best choice for producing nanoparticles. Several physicochemical characterization techniques are available such as ultraviolet spectrophotometry, Fourier transform infrared spectroscopy, the atomic force microscopy, the scanning electron microscopy, the vibrating specimen magnetometer, the superconducting complex optical device, the energy dispersive X-ray spectrometry, and X-ray photoelectron spectroscopy to investigate the nanomaterials. In the meanwhile, there are some challenges associated with the use of nanoparticles, which need to be addressed for the sustainable environment.
Protein- and peptide-based medications are recognized for their effectiveness and lower toxicity compared to chemical-based drugs, making them promising therapeutic agents. However, their application has been limited by numerous delivery challenges. Polymeric nanostructures have emerged as effective tools for protein delivery due to their versatility and customizability. Polymers’ inherent adaptability makes them ideal for meeting the specific demands of protein-delivery systems. Various strategies have been employed, such as enzyme inhibitors, absorption enhancers, mucoadhesive polymers, and chemical modifications of proteins or peptides. This study explores the hurdles associated with protein and peptide transport, the use of polymeric nanocarriers (both natural and synthetic) to overcome these challenges, and the techniques for fabricating and characterizing nanoparticles.
Nickel Oxide (NiO) nanoparticles (NPs), doped with manganese (Mn) and cobalt (Co) at concentrations up to 8%, were synthesized using the composite hydroxide method (CHM). X-ray diffraction (XRD) analysis confirmed the formation of a cubic NiO structure, with no additional peaks detected, indicating successful doping. The average crystallite size was determined to range from 15 to 17.8 nm, depending on the dopant concentration. Scanning electron microscopy (SEM) images revealed mostly spherical, agglomerated particles, likely due to magnetic interactions. Fourier Transform Infrared Spectroscopy (FTIR) confirmed the incorporation of Mn and Co into the NiO lattice, consistent with the XRD results. The dielectric properties exhibited a high dielectric constant at low frequencies, which can be attributed to ion jump orientation and space charge effects. The imaginary part of the dielectric constant decreased with increasing frequency, as it became harder for electrons to align with the alternating field at higher frequencies. Both the real and imaginary dielectric constants showed behavior consistent with Koop’s theory, increasing at low frequencies and decreasing at higher frequencies. Dielectric loss was primarily attributed to dipole flipping and charge migration. AC conductivity increased with frequency, and exhibited higher conductivity at high frequencies due to small polaron hopping. These co-doped NPs show potential for applications in solid oxide fuel cells.
The MDA-MB-231 cell line is derived from triple-negative breast cancer (TNBC), representing one of the most aggressive forms of breast cancer. Innovative therapeutic strategies, including s targeted therapies using nanocarriers, hold significant promise, particularly for difficult-to-treat cancers such as TNBC. Nanoparticles have transformed the medical field by serving as advanced drug delivery systems for cancer treatment. They play a critical role in overcoming the drug resistance often associated with cancer therapies. When utilized as drug delivery vehicles, nanoparticles can specifically target cancer cells and effectively reduce or eliminate multidrug resistance. Among them, chitosan-coated magnetic nanoparticles (MNPs) have been widely explored for the loading and controlled release of various anticancer agents. In this study, we evaluated the effects of dexamethasone-loaded chitosan-coated MNPs on MDA-MB-231 cell lines. Fourier transform infrared spectroscopy and scanning electron microscopy were employed to verify the successful loading of dexamethasone onto the nanoparticles. To assess cytotoxicity, empty nanoparticles, free drug, and drug-loaded nanoparticles were tested on the cells. The results indicated that empty nanoparticles exhibited no toxic effects. The IC50 value of the free drug was 123 µg/mL, while the IC50 value of the drug-loaded nanoparticles was significantly lower, at 63 µg/mL. These findings confirmed the successful conjugation of dexamethasone to the chitosan-coated MNPs, demonstrating substantial cytotoxic effects on breast cancer cells. Although dexamethasone has been reported to exhibit both tumor-suppressive and pro-metastatic effects, its specific impact on TNBC warrants further investigation in future studies.
Copyright © by EnPress Publisher. All rights reserved.