The detection of urban expansion through digital processing of satellite images provides valuable information for understanding the dynamics of land use change and its spatial relationship with environmental factors. In order to apply or generate effective land-use planning policies, it is essential to have a historical record of the regional distribution of human settlements, an element that is practically non-existent in our country. For this reason, this text aims to determine the urban growth rate during the period 2000–2014 in the state of Hidalgo, Mexico, and to identify potential expansion zones from Landsat images. Six Landsat scenes were used for the spatial analysis of the state urban coverage and their relationship with the road influence area was evaluated. Two maps were obtained as cartographic products: one of urban coverage distribution and another of the municipalities with the greatest expansion, whose areas are located in the Valle del Mezquital region. However, Mineral de la Reforma, Tetepango, Tizayuca and Pachuca de Soto stand out for their growth rates during the study period: 183.44%, 102%, 94% and 68.5%, respectively. In total, the state urban area in-creased 72.3 km2 from 2000 to 2014 with an average growth rate of 1.8% per year. Such growth was associated with the areas of influence of important road infrastructure, such as the Libramiento Arco Norte in Hidalgo. Therefore, the Mezquital Valley and the Mexico Basin are considered as potential regions for urban expansion in the state.
Soil salinity is a major abiotic stress that drastically hinders plant growth and development, resulting in lower crop yields and productivity. As one of the most consumed vegetables worldwide, tomato (Solanum lycropersicum L.) plays a key role in the human diet. The current study aimed to explore the differential tolerance level of two tomato varieties (Rio Grande and Agata) to salt stress. To this end, various growth, physiological and biochemical attributes were assessed after two weeks of 100 mM NaCl treatment. Obtained findings indicated that, although the effects of salt stress included noticeable reductions in shoots’ and roots’ dry weights and relative growth rate as well as total leaf area, for the both cultivars, Rio Grande performed better compared to Agata variety. Furthermore, despite the exposure to salt stress, Rio Grande was able to maintain an adequate tissue hydration and a high leaf mass per area (LMA) through the accumulation of proline. However, relative water content, LMA and proline content were noticeably decreased for Agata cultivar. Likewise, total leaf chlorophyll, soluble proteins and total carbohydrates were significantly decreased; whereas, malondialdehyde was significantly accumulated in response to salt stress for the both cultivars. Moreover, such negative effects were remarkably more pronounced for Agata relative to Rio Grande cultivar. Overall, the current study provided evidence that, at the early growth stage, Rio Grande is more tolerant to salt stress than Agata variety. Therefore, Rio Grande variety may constitute a good candidate for inclusion in tomato breeding programs for salt-tolerance and is highly recommended for tomato growers, particularly in salt-affected fields.
The Ecuadorian electricity sector encompasses generation, transmission, distribution and sales. Since the change of the Constitution in Ecuador in 2008, the sector has opted to employ a centralized model. The present research aims to measure the efficiency level of the Ecuadorian electricity sector during the period 2012–2021, using a DEA-NETWORK methodology, which allows examining and integrating each of the phases defined above through intermediate inputs, which are inputs in subsequent phases and outputs of some other phases. These intermediate inputs are essential for analyzing efficiency from a global view of the system. For research purposes, the Ecuadorian electricity sector was divided into 9 planning zones. The results revealed that the efficiency of zones 6 and 8 had the greatest impact on the overall efficiency of the Ecuadorian electricity sector during the period 2012–2015. On the other hand, the distribution phase is the most efficient with an index of 0.9605, followed by sales with an index of 0.6251. It is also concluded that the most inefficient phases are generation and transmission, thus verifying the problems caused by the use of a centralized model.
This study investigates the effectiveness of digital leadership in promoting organizational sustainability, with a specific focus on the mediating role of digital leadership capability. The research explores how digital leadership impacts sustainable performance within Chinese construction organizations. Using structural equation modeling (SEM), the study analyzes data collected from 529 respondents across various organizations. The findings reveal that digital leadership significantly enhances organizational sustainability both directly and indirectly, through digital leadership capability. These results underscore the importance of digital leadership as a critical factor in guiding digital transformation and achieving long-term sustainable outcomes. The study contributes to the literature by highlighting digital leadership’s role in fostering organizational adaptability and sustainability in rapidly evolving digital environments.
The present study aimed to delineate subsurface features and identify prospective metallic mineral deposits in the Adıyaman-Besni area, situated within the Southeastern Anatolian Thrust Belt of Turkey. This region, characterized by ophiolitic mélanges and volcanic massive sulfide (VMS) deposits in its geological framework, possesses significant mineralization potential, encompassing copper, lead, and various other sulfide minerals. Utilizing the combined methodologies of Induced Polarization (IP) and Electrical Resistivity Tomography (ERT), a comprehensive electrical mapping of the subsurface structures was conducted, revealing that mineralized zones had low resistivity and high chargeability. The findings indicate that the combined use of IP and ERT techniques yields excellent precision in accurately delineating the features of sulfide mineralization and the peripheries of mineral deposits. This study offers fundamental data for the economic assessment of prospective mineral deposits in the Adıyaman-Besni region and underscores the benefits of IP and ERT techniques in subsurface mapping and mineralization delineation investigations. The mineralized zone has low resistivity (< 50 ohm-m) and strong chargeability (> 30 ms), according to geophysical tests. It also offers a methodological framework for subsequent mineral exploration research in analogous geological formations.
Inland Container Depots (ICDs) are inland multi-modal terminals where goods in intermodal loading units can be transferred directly to seaports. The contribution of ICDs to regions’ economic and social growth is undeniable. To achieve the sustainable development of ICDs, evaluating and improving their service quality is critical. This study aims to investigate the factors contributing to the service quality of ICD in a developing country. The data utilized covers some ICDs in the Red River Delta, Vietnam. Regarding analytic methods, descriptive statistics first were run to show the level of aspects of service quality of ICDs. Subsequently, attitudinal statements were analyzed using exploratory factor analysis before linear regression was applied to recognize the factors influencing the service quality of ICDs. Generally, the service quality of ICDs was evaluated at an acceptable level but far from the high one. The results suggested that the four influential service quality factors included location and accessibility, facilities, process and management, and labor. Based on the findings of contributing factors, managerial implications were proposed.
Copyright © by EnPress Publisher. All rights reserved.