In higher eukaryotes, the genes’ architecture has become an essential determinant of the variation in the number of transcripts (expression level) and the specificity of gene expression in plant tissue under stress conditions. The modern rise in genome-wide analysis accounts for summarizing the essential factors through the translocation of gene networks in a regulatory manner. Stress tolerance genes are in two groups: structural genes, which code for proteins and enzymes that directly protect cells from stress (such as genes for transporters, osmo-protectants, detoxifying enzymes, etc.), and the genes expressed in regulation and signal transduction (such as transcriptional factors (TFs) and protein kinases). The genetic regulation and protein activity arising from plants’ interaction with minerals and abiotic and biotic stresses utilize high-efficiency molecular profiling. Collecting gene expression data concerning gene regulation in plants towards focus predicts an acceptable model for efficient genomic tools. Thus, this review brings insights into modifying the expression study, providing a valuable source for assisting the involvement of genes in plant growth and metabolism-generating gene databases. The manuscript significantly contributes to understanding gene expression and regulation in plants, particularly under stress conditions. Its insights into stress tolerance mechanisms have substantial implications for crop improvement, making it highly relevant and valuable to the field.
Cobalt-ion batteries are considered a promising battery chemistry for renewable energy storage. However, there are indeed challenges associated with co-ion batteries that demonstrate undesirable side reactions due to hydrogen gas production. This study demonstrates the use of a nanocomposite electrolyte that provides stable performance cycling and high Co2+ conductivity (approximately 24 mS cm−1). The desirable properties of the nanocomposite material can be attributed to its mechanical strength, which remains at nearly 68 MPa, and its ability to form bonds with H2O. These findings offer potential solutions to address the challenges of co-dendrite, contributing to the advancement of co-ion batteries as a promising battery chemistry. The exceptional cycling stability of the co-metal anode, even at ultra-high rates, is a significant achievement demonstrated in the study using the nanocomposite electrolyte. The co-metal anode has a 3500-cycle current density of 80 mA cm−2, which indicates excellent stability and durability. Moreover, the cumulative capacity of 15.6 Ah cm−2 at a current density of 40 mA cm−2 highlights the better energy storage capability. This performance is particularly noteworthy for energy storage applications where high capacity and long cycle life are crucial. The H2O bonding capacity of the component in the nanocomposite electrolyte plays a vital role in reducing surface passivation and hydrogen evolution reactions. By forming strong bonds with H2O molecules, the polyethyne helps prevent unwanted reactions that can deteriorate battery performance and efficiency. This mitigates issues typically associated with excess H2O and ion presence in aqueous Co-ion batteries. Furthermore, the high-rate performance with excellent stability and cycling stability performance (>500 cycles at 8 C) of full Co||MnO2 batteries fabricated with this electrolyte further validates its effectiveness in practical battery configurations. These results indicate the potential of the nanocomposite electrolyte as a valuable and sustainable option, simplifying the development of reliable and efficient energy storage systems and renewable energy applications.
Every plant is significantly important in tackling climate change, including Makila (Litsea angulata BI) an endemic wood species found in the forest of Moluccas Provinces. Therefore, this research aimed to examine the role of the Makila plant in tackling climate change by measuring biomass content using constructing an allometric equation. The method used was a destructive sampling, where 40 units of Makila plant at the sampling level were felled, and sorted according to root, stem, branch, rating, and leaf segments. Each segment was weighed both at wet and after drying, followed by a classical assumption test in data processing, and the formulation of an allometric equation. The regression model was examined for normality and suitability in predicting independent variables, ensuring there were no issues with multicollinearity, heteroscedasticity, and autocorrelation. The results yielded a multiple linear regression, namely: Y = −1131.146 + 684.799X1 + 4.276X2, where Y is biomass, X1 is the diameter, and X2 is the tree height. Based on the results of the t-test: variable X1 partially affected Y while variable X2 partially had no effect on Y. The F-test indicated that variables X1 and X2 jointly affected Y with R Square: 0.919 or 91.9% and the rest was influenced by other unexplored factors. To simplify biomass prediction and field measurement, a regression equation that used only 1 independent variable, namely tree diameter, was used for the experiment. Allometric equation only used 1 variable, Y = −1,084,626 + 675,090X1, where X1 = tree diameter, Y = Total biomass with R = 0.957, and R2 = 0.915. Considering the potential for time, cost, and energy savings, as well as ease of measurement in the field, the biomass of young Makila trees was simply predicted by measuring the tree diameter and avoiding the height. This method used the strong relationship between biomass, plant diameter, and height to facilitate the estimation of biomass content accurately by entering the results of field measurements.
This article reports the development of an index of culturality in Chile. Fifteen quantitative variables indicative of local cultural development are used to measure the access to cultural opportunities in each Chilean district. This approach was adopted from the theoretical framework of cultural materialism theorized by Marvin Harris in the seventies. Using this framework, a ranking is developed among 164 districts to determine the degree of cultural development exists in each and the variables that are the influential on the enhancement of this indicator. The results showed that the districts of Rancagua, Providencia, La Reina, El Bosque, and Valparaíso have better cultural opportunities based on their material forms, which are mainly driven by obtaining funds for cultural projects, workers’ salaries, civic activity, and public libraries. Based on the results of this ranking, a baseline is proposed to develop it using new data. In addition, recommendations are provided regarding public policies that have promoted cultural development in the communities with unsuccessful results. The article provides significant information for decision makers in Chile and a quantitative method for exploring cultural materialism in specific territories.
[Objective]In order to explore the sustainable food security level in the Yangtze River Economic Belt, ensure food security and sustainable development of agricultural modernization, it is necessary to establish a scientific food security evaluation system to safeguard local food security.[Methods]This paper takes the food system of the Yangtze River Economic Belt in China as the research object, based on the food security research results at home and abroad, based on sustainable development thinking, combined with a new perspective of dynamic equilibrium research: Beginning with food normalcy, a comprehensive analysis of food production, food economy, social development, ecological security, and technical support for sustainable development is presented using the entropy-weighted TOPSIS model to build a food security evaluation system for sustainable development. [Conclusion]After systematic analysis, it is concluded that (1) the average value of food security score of the Yangtze River Economic Belt from 2008 to 2021 is 0.429, and the overall food in the Yangtze River Economic Belt is in general security level (0.400 ≤ Q1 ≤ 0.600), and the overall situation of food security is not optimistic, (2) from the segmentation of the Yangtze River Economic Belt, the high and low level of food security are divided into sections: midstream > downstream > upstream, and each province and city is slowly rising to different degrees. In this way, we propose general countermeasures to ensure local food security from the perspective of sustainable development.
A panel data analysis of nonlinear government expenditure and income inequality dynamics in a macroprudential policy regime was conducted on a panel of 15 emerging countries from 1985–2019, where there had been a non-prudential regime from 1985–1999 and a prudential regime from 2000–2019. The paper explored the validity of the nonlinearity between government expenditure and income inequality in the macroprudential policy regime as well as the threshold level at which excessive spending reduces income inequality using the Bayesian spatial lag panel smooth transition regression (BSPSTR) and fix effect models. The BSPSTR model was adopted due to its ability to address the problems of heterogeneity, endogeneity, and cross-section correlation in a nonlinear framework. Moreover, as the transition variable often varies across time and space, the effect of the independent variables can also be time- and space-varying. The results reveal evidence of a nonlinear effect between government spending and income inequality, where the minimum level of government spending is found to be 29.89 percent of GDP, above which expenditure reduces inequality in emerging countries. The findings confirmed an inverted U-shaped relationship. The focal policy recommendation is that fiscal policy decisions that will reinforce the need for more emphasis on education and public expenditure on education and health, as important tools for improving income inequality, are crucial for these economies. Caution is needed when introducing macroprudential policies, especially at a low level of government expenditure.
Copyright © by EnPress Publisher. All rights reserved.