In this study, the development of rinnenkarren systems is analyzed. During the field studies, 36 rinnenkarren systems were investigated. The width and depth were measured at every 10 cm on the main channels and then shape was calculated to these places (the quotient of channel width and depth). Water flow was performed on artificial rinnenkarren system. A relation was looked for between the density of tributary channels and the average shape of the main channel, between the distance of tributary channels from each other and the shape of a given place of the main channel. The density and total length of the tributary channels on the lower and upper sections of the main channels being narrow at their lower end (11 pieces) and being wide at their lower end (10 pieces) of the rinnenkarren systems were calculated as well as their average proportional distance from the lower end of the main channel. The number of channel hollows was determined on the lower and upper sections of these main channels. It can be stated that the average shape of the main channel calculated to its total length depends on the density of the tributary channels and on the distance of tributary channels from each other. The main channel shape is smaller if less water flows on the floor for a long time because of the small density of the tributary channels and the great distance between the tributary channels. In this case, the channel deepens, but it does not widen. The width of the main channel depends on the number and location of the rivulets developing on channel-free relief. The main channel becomes narrow towards its lower end if the tributary rivulets are denser and longer on the upper part of the main rivulet developing on the channel-free, plain terrain and their distance is larger compared to the lower end. The channel hollows develop mainly at those places where the later developing tributary channels are hanging above the floor of the main channel. Thus, the former ones are younger than the latter ones. It can be stated that the morphology of the main channels (shape, channel hollows, and width changes of the main channel) is determined by the tributary channels (their number, location and age).
Every plant is significantly important in tackling climate change, including Makila (Litsea angulata BI) an endemic wood species found in the forest of Moluccas Provinces. Therefore, this research aimed to examine the role of the Makila plant in tackling climate change by measuring biomass content using constructing an allometric equation. The method used was a destructive sampling, where 40 units of Makila plant at the sampling level were felled, and sorted according to root, stem, branch, rating, and leaf segments. Each segment was weighed both at wet and after drying, followed by a classical assumption test in data processing, and the formulation of an allometric equation. The regression model was examined for normality and suitability in predicting independent variables, ensuring there were no issues with multicollinearity, heteroscedasticity, and autocorrelation. The results yielded a multiple linear regression, namely: Y = −1131.146 + 684.799X1 + 4.276X2, where Y is biomass, X1 is the diameter, and X2 is the tree height. Based on the results of the t-test: variable X1 partially affected Y while variable X2 partially had no effect on Y. The F-test indicated that variables X1 and X2 jointly affected Y with R Square: 0.919 or 91.9% and the rest was influenced by other unexplored factors. To simplify biomass prediction and field measurement, a regression equation that used only 1 independent variable, namely tree diameter, was used for the experiment. Allometric equation only used 1 variable, Y = −1,084,626 + 675,090X1, where X1 = tree diameter, Y = Total biomass with R = 0.957, and R2 = 0.915. Considering the potential for time, cost, and energy savings, as well as ease of measurement in the field, the biomass of young Makila trees was simply predicted by measuring the tree diameter and avoiding the height. This method used the strong relationship between biomass, plant diameter, and height to facilitate the estimation of biomass content accurately by entering the results of field measurements.
Copyright © by EnPress Publisher. All rights reserved.