The study focused on investigating the effects of varying levels of HA (HA1 = 0, HA2 = 25, HA3 = 50, HA4 = 75, and HA5 = 100) on Red Dragon, Red Prince, and Red Meat varieties of red radish. This analysis aimed to unravel the relationship between different levels of HA and their impact on the growth and productivity of red radish genotypes. The findings revealed that the Red Prince genotype attained the utmost plant height of 24.00 cm, an average of 7.50 leaves per plant, a leaf area of 23.11 cm2, a canopy cover of 26.76%, a leaf chlorophyll content of 54.60%, a leaf fresh weight of 41.16 g, a leaf dry weight of 8.20 g, a root length measuring 9.73 cm, a root diameter of 3.19 mm, a root fresh weight of 27.60 g, a root dry weight of 6.75 g, and a remarkable total yield of 17.93 tons per hectare. The implications of this study are poised to benefit farmers within the Dera Ismail Khan Region, specifically in the plain areas of Pakistan, by promoting the cultivation of the Red Prince variety.
The idea of a smart city has evolved in recent years from limiting the city’s physical growth to a comprehensive idea that includes physical, social, information, and knowledge infrastructure. As of right now, many studies indicate the potential advantages of smart cities in the fields of education, transportation, and entertainment to achieve more sustainability, efficiency, optimization, collaboration, and creativity. So, it is necessary to survey some technical knowledge and technology to establish the smart city and digitize its services. Traffic and transportation management, together with other subsystems, is one of the key components of creating a smart city. We specify this research by exploring digital twin (DT) technologies and 3D model information in the context of traffic management as well as the need to acquire them in the modern world. Despite the abundance of research in this field, the majority of them concentrate on the technical aspects of its design in diverse sectors. More details are required on the application of DTs in the creation of intelligent transportation systems. Results from the literature indicate that implementing the Internet of Things (IoT) to the scope of traffic addresses the traffic management issues in densely populated cities and somewhat affects the air pollution reduction caused by transportation systems. Leading countries are moving towards integrated systems and platforms using Building Information Modelling (BIM), IoT, and Spatial Data Infrastructure (SDI) to make cities smarter. There has been limited research on the application of digital twin technology in traffic control. One reason for this could be the complexity of the traffic system, which involves multiple variables and interactions between different components. Developing an accurate digital twin model for traffic control would require a significant amount of data collection and analysis, as well as advanced modeling techniques to account for the dynamic nature of traffic flow. We explore the requirements for the implementation of the digital twin in the traffic control industry and a proper architecture based on 6 main layers is investigated for the deployment of this system. In addition, an emphasis on the particular function of DT in simulating high traffic flow, keeping track of accidents, and choosing the optimal path for vehicles has been reviewed. Furthermore, incorporating user-generated content and volunteered geographic information (VGI), considering the idea of the human as a sensor, together with IoT can be a future direction to provide a more accurate and up-to-date representation of the physical environment, especially for traffic control, according to the literature review. The results show there are some limitations in digital twins for traffic control. The current digital twins are only a 3D representation of the real world. The difficulty of synchronizing real and virtual world information is another challenge. Eventually, in order to employ this technology as effectively as feasible in urban management, the researchers must address these drawbacks.
Lettuce (Lactuca sativa L.) is the main leafy vegetable grown in Brazil. Its productivity and quality are limited by the growing season, the nearby environment and the type of cultivar adopted. The objective of this work was to verify at different times of the year the best planting environment for lettuce cultivation in a semi-humid tropical climate. For this purpose, an experiment was set up in three different seasons (October–November 2014, January–March, May–July 2015). The experimental design was randomized blocks, in a 3 × 3 × 2 factorial arrangement, consisting of three seasons, three cultivars (cvs. Vera®, Tainá® and Rafaela®) and two growing environments (low tunnel with beds protected with mulching consisting of soil protection with plastic fabric covering, and beds without protection or conventional cultivation) and four replicates per treatment. Plant biomass, stem length, head diameter, number of leaves per head and crop productivity were evaluated as response parameters. The results showed that the May–July period favored biomass production, head diameter and productivity. Despite the similarity between varieties, the variety Vera® is more productive in biomass, number of leaves per head, stem length and productivity. The low tunnel planting system with mulching is adequate under the conditions evaluated for lettuce cultivation. This system in the May–July period favors a superior development in the characteristics biomass, head diameter and productivity, if compared to conventional cultivation during the October–November period.
Introduction: Growth, yield and quality of okra (Abelmoschus esculentus (L.) Moench) are related to fertilizer application, being nitrogen (N) the most outstanding, due to its direct relationship with photosynthesis and vegetative growth of the plant. Objective: The objective was to evaluate the agronomic and productivity characteristics of okra as a function of N dose. Materials and methods: The study was conducted at the experimental area of Campus Gurupi, the Universidad Federal de Tocantins (UFT), Brazil, in two planting periods (autumn/winter and spring/summer). The experimental design used was randomized block design (RBD) with six treatments (50, 100, 150, 150, 200 and 250 kg N ha-1) and four replications. Urea was used as a source of N. The characteristics evaluated were: productivity, average fruit mass, height and plant chlorophyll index. Results: Productivity and plant height were superior in the fall/winter crop. Mean fruit mass and chlorophyll index were not influenced by planting time. For productivity, a linear response was obtained with increasing dose up to the limit of the N dose used (250 kg ha-1), with a mean value higher than 14 t of fruit. Mean mass and plant height responded linearly to increasing N dose. Nitrogen affected the chlorophyll index, with maximum values of 45.96 and 47.19, observed in the two evaluation periods. Conclusion: Planting time and N content in the soil interacted with plant height, being favorable in the period without precipitation. N influenced all the characteristics, demonstrating the importance of nitrogen fertilization in the development of okra plants.
The objective of this work was to evaluate the effect of potassium concentrations applied via fertigation on the growth, yield and chemical composition of eggplant ‘Ciça’ in a distroferric red Latosol. The treatments were composed of five concentrations of K2O (0, 36, 72, 108 and 144 kg ha-1 supplied via fertigation), using potassium chloride as a source, divided into six applications. The irrigation system was of the drip type and irrigation management was done via a “Class A” evaporometer tank. Harvest started at 62 days after transplanting (DAT) and lasted for five months. The variables evaluated were: plant height, number of leaves, fresh fruit mass, number of fruits per plant, yield per plant, productivity and classification of the fruits according to their length and diameter. At 85 DAT, fruit were collected for characterization as to the percentage of lipids, proteins and fibers. Although the potassium fertigation in cover provided a reduction in the production and productivity, the concentrations of 36 kg ha-1 and 72 kg ha-1 of K2O applied via fertigation, increased the physical-chemical characteristics of the fruits.
The objective of this study was to evaluate the growth of four lettuce cultivars in Southern Piauí to recommend the best ones for the region. The experiment was conducted in a greenhouse with randomized blocks, with evaluation in subdivided time plots, evaluated in six seasons (20, 24, 28, 32, 36, 40 days after sowing—DAS) and with treatments corresponding to four cultivars (Americana Rafaela®, Grand Rapids TBR®, Crespa Repolhuda® and Repolhuda Todo ano®) with five repetitions. Leaf area, number of leaves, collar diameter, aboveground fresh mass, aboveground dry mass, root dry mass and total and the physiological indices of growth analysis were evaluated. The lettuce cultivars interfered significantly in the studied parameters, being that Americana Rafaela® and Repolhuda todo ano®, in the conditions that they were submitted, presented better performances and bigger morphophysiological indexes, cultivated in pot. The cultivars Americana Rafaela® and Repolhuda todo ano® can be produced under the conditions of the south of Piauí.
Copyright © by EnPress Publisher. All rights reserved.