Nanoparticle drug delivery systems are engineered technologies that use nanoparticles for the targeted delivery and controlled release of therapeutic agents. Cisplatin-loaded nanoparticle formulations were optimized utilizing response surface methods and the central composite rotating design model. This study employed a central composite rotatable design with a three-factored factorial design with three tiers. Three independent variables namely drug polymer ratio, aqueous organic phase ration, and stabilizer concentration were used to examine the particle size, entrapment efficiency, and drug loading of cisplatin PLGA nanoparticles as responses. The results revealed that this response surface approach might be able to be used to find the best formulation for the cisplatin PLGA nanoparticles. A polymer ratio of 1:8.27, organic phase ratio of 1:6, and stabilizer concentration of 0.15 were found to be optimum for cisplatin PLGA nanoparticles. Nanoparticles made under the optimal conditions found yielded a 112 nm particle size and a 95.4 percent entrapment efficiency, as well as a drug loading of 9 percent. The cisplatin PLGA nanoparticles tailored for scanning electon microscopy displayed a spherical form. A series of in vitro tests showed that the nanoparticle delivered cisplatin progressively over time. According to this work, the Response Surface Methodology (RSM) employing the central composite rotatable design may be successfully used to simulate cisplatin-PLGA nanoparticles.
Broad-spectrum antibiotics, such as tetracyclines, are used to treat and manage a range of infectious disorders. Since the kidneys are the primary organs responsible for excreting tetracyclines, clinicians should refrain from prescribing them to patients who have renal failure. Tetracyclines are one of the clinical waste products of today. One of the biggest problems in the field of pollution of the environment today is the persistence of different pharmaceutical residues, drug residues, pesticides, and metal ion species of the new-generation pollutants in surfaces and groundwater. In the present work, carboxymethyl cellulose (CMC)-CuO nanoparticles (CMC-CuO NPs) were synthesized using CuO NPs within different amounts of CMC (0.5, 1.0, 1.5 and 2.0 g) at 85 °C. The synthesized nanoparticles were characterized by XRD, FT IR, SEM, and TG-DTA analysis. According to XRD and SEM, the crystallize size and morphology influenced the dosage of CMC. FT-IR analysis confines the layer of CMC to the CuO nanoparticle surface. TG-DTA results indicated that the CMC content of CMC-CuO NPs was between the range of 69% and 75% by weight. The effects of some parameters such as initial concentration, pH, adsorbent dosage, and contact time on the adsorption of tetracycline from aqueous model solutions on CMC-CuO NPs were investigated with batch studies. It was found that the removal of tetracycline was obtained about 80% with optimized parameters of 10 mg/L concentration, 180 min contact time, 5 pH, and 0.3 g/25 mL dose. The synthesized CMC-CuO NPs nanocomposite may be a promising material for the removal of tetracycline in environmental pollution and toxicology.
This work presents the evaluation of iron oxide nanoparticles obtained from the aqueous extract of Eucalyptus grandis. Twenty-three experiments were carried out where the synthesis of nanoparticles was performed by using the aqueous extract together with salts of iron (II) chloride tetrahydrate and iron (III) chloride hexahydrate. A characterization was carried out by IR, TEM and BET, where bands were presented at 3,440.77, 1,559.26 and 445.31 cm−1, indicating the presence of iron oxide nanoparticles. A relatively high monodispersity was evidenced with particles around 9 nm. By means of BET analysis it was found to present a surface area of 131.897 m2/g. Obtaining nanoparticles by this green method presents yield values of 98%, with application in nanotechnology, biomedicine, environmental treatment, among others, making them highly versatile and their production cost is relatively low.
Heat removal has become an increasingly crucial issue for microelectronic chips due to increasingly high speed and high performance. One solution is to increase the thermal conductivity of the corresponding dielectrics. However, traditional approach to adding solid heat conductive nanoparticles to polymer dielectrics led to a significant weight increase. Here we propose a dielectric polymer filled with heat conductive hollow nanoparticles to mitigate the weight gain. Our mesoscale simulation of heat conduction through this dielectric polymer composite microstructure using the phase-field spectral iterative perturbation method demonstrates the simultaneous achievement of enhanced effective thermal conductivity and the low density. It is shown that additional heat conductivity enhancement can be achieved by wrapping the hollow nanoparticles with graphene layers. The underlying mesoscale mechanism of such a microstructure design and the quantitative effect of interfacial thermal resistance will be discussed. This work is expected to stimulate future efforts to develop light-weight thermal conductive polymer nanocomposites.
Branched micro/nano Se was prepared by the redaction of L-Cys•HCl and H2SeO3 in hydrothermal method, as β-CD was used as soft template. The structures of products were characterized by SEM, TEM and XRD. Some important factors influencing the morphology of products were studied and discussed, including the amounts of soft template, the reaction temperature and the reaction time. The results showed that external causes had a potent effect on the morphology of micro/nano Se. The uniform branched micro/nano Se prepared under the optimal reaction condition was rhombohedral trigonal selenium t-Se0, but its crystallinity degree was low.
Copyright © by EnPress Publisher. All rights reserved.