Potassium dihydrogen phosphate, KH2PO4 (KDP) crystal is an excellent electro-optical nonlinear optical crystal with large electro-optical nonlinear coefficient, high laser damage threshold, and laser frequency doubling effect, electro-optical effect , Piezoelectric effects and other special features, widely used in inertial confinement fusion engineering (ICF) and electro-optical switching devices. Therefore, its growth mechanism, growth process and performance have been systematically studied. In the process of KDP crystal growth, it is found that the stability of the growth solution is an important factor affecting the quality of crystal growth. Therefore, in recent years, more and more research on the stability of the solution, such as the study of ph, doping, supersaturation, overheating time on the stability of the solution. Among them, the research on the doping is mostly reported, and the research on this aspect is mainly focused on two aspects. On the one hand, it is the study of the stability of the solution under doping, and the other is the effect of doping on the optical quality of the crystal. In fact, the stability of the growth solution and the quality of crystal growth is directly related to the quality, but the existing research to isolate the two researches. Therefore, the experiment will be carried out in the case of double-doped KDP solution stability, KDP crystal growth and crystal optical quality and other experiments, and in-depth analysis of the impact of solution stability and crystal optical quality of the reasons, while the solution stability and The relationship between the optical quality of the crystal is briefly analyzed.
Polymer waste drilling fluid has extremely high stability, and it is difficult to separate solid from liquid, which has become a key bottleneck problem restricting its resource recycling. This study aims to reveal the stability mechanism of polymer waste drilling fluid and explore the destabilization effect and mechanism of ultrasonic waste drilling fluid. Surface analysis techniques such as X-ray energy spectrum and infrared spectrum were used in combination with colloidal chemical methods to study the spatial molecular structure, stability mechanism, and ultrasonic destabilization mechanism of drilling fluid. The results show that the particles in the drilling fluid exist in two forms: uncoated particles and particles coated by polymers, forming a high molecular stable particle system. Among them, rock particles not coated by polymer follow the vacancy stability and Derjaguin-Landau-Verwey-Overbeek (DLVO) stability mechanism, and the weighting material coated by the polymer surface follows the space stability and DLVO stability mechanism. The results of ultrasonic destabilization experiments show that after ultrasonic treatment at 1000 W power for 5 min, coupled with the addition of 0.02% cationic polyacrylamide, the dehydration rate is as high as 81.0%, and the moisture content of the mud cake is as low as 29.3%, achieving an excellent solid-liquid separation effect. Ultrasound destabilizes polymer waste drilling fluid by destroying the long-chain structure of the polymer. This study provides theoretical support and research direction for the research and development of polymer waste drilling fluid destabilization technology.
Synthetic membranes play a crucial role in a wide range of separation processes, including dialysis, electrodialysis, ultrafiltration, and pervaporation, with growing interest in synthetic emulsion membranes due to their precision, versatility, and ion exchange capabilities. These membranes enable tailored solutions for specific applications, such as water and gas separation, wastewater treatment, and chemical purification, by leveraging their multi-layered structures and customizable properties. Emulsion membrane technology, particularly in pressure-driven methods like reverse osmosis (RO) and nanofiltration (NF), has shown great potential in overcoming traditional challenges, such as fouling and energy inefficiency, by improving filtration efficiency and selectivity. This review explores the latest advancements in emulsion membrane development, their adaptability to various industrial needs, and their contribution to addressing long-standing limitations in membrane separation technologies. The findings underscore the promise of emulsion membranes in advancing industrial processes and highlight their potential for broader applications in water treatment, environmental management, and other key sectors.
Qatar FIFA 2022 was the first FIFA Football World Cup to be hosted by an Arab state and was predicted by some to fail. However, it did not only succeed but also showed a new display of destination sustainability upon hosting mega-sport events and linked tourism. Yet, some impacts tend to be long-term and need further analysis. The study aims to understand both positive and negative impacts on destination sustainability resulting from hosting mega-sport events, using bibliometric analysis of published literature during the last forty-seven years, and reflecting on the recent World Cup 2022 tournament in Qatar. A total of 2519 sources containing 665 open-access articles with 10,523 citations were found using the keywords “sport tourism” and “mega-sport”. The study found various literature researching the economic impacts in-depth, less on environmental impacts, and much less on social and cultural impacts on host communities. Debates exist in the literature concerning presumed economic benefits and motivations for hosting, and less on actual results achieved. Although World Cup 2022 is considered the most expensive among previous versions, destination sustainability seems to have benefited from the event’s hosting. Socio-cultural impacts of hosting mega-sport events seem to be addressed to an extent in the Qatar version of the World Cup, as well as environmental impacts while creating a unique image for FIFA 2022 and the destination itself. FIFA showcased this as using carbon-neutral technologies to create the micro-climate including perforated walls in the eight state-of-the-art stadiums, with the incorporation of a circular modular design for energy and water efficiency and zero-waste deconstruction post-event. The global event also drew attention and respect to the local community and underprivileged groups such as people with disabilities. Further research is needed to understand the demand-side perspective including the local community of Qatar and the event’s participants, and to analyze the long-term impacts and lessons learned from the Qatari experience.
High-quality implementation of cross-border mergers and acquisitions (cross-border M&As) is an important pathway for emerging-market multinational enterprises (EMNEs) to enhance their international competitiveness. However, in comparison to developed countries, cross-border M&As by EMNEs are often prohibited by the liability of origin caused by negative political coverage. How and why negative political coverage affect the completion of cross-border M&As by EMNEs? What are the contextual constraints that moderate the impact of negative political coverage on cross-border M&As completion? Based on the “liability of origin” theory, this paper addresses these questions using data from the Zephyr database on cross-border M&As by EMNEs in the United States from 2016 to June 2021 and employing a logit model for estimation. The research findings are as follows: (1) Negative political coverage leads to negative perceptions of emerging market countries by host country stakeholders, creating the liability of origin and stigmatizing the corporate nationality, thereby reducing the success rate of cross-border M&As by EMNEs. (2) Increasing geographical distance leads to information asymmetry, reinforcing the negative impact of negative political coverage on the completion of cross-border M&As by EMNEs. (3) Relevant mergers and acquisitions exacerbate the negative effect of negative political coverage on the success rate of cross-border M&As by EMNEs. (4) Being a publicly traded firm and having successful experience in cross-border M&As both intensify the negative impact of negative political coverage on the success rate of cross-border M&As by EMNEs.
The cars industry has undergone significant technological advancements, with data analytics and artificial intelligence (AI) reshaping its operations. This study aims to examine the revolutionary influence of artificial intelligence and data analytics on the cars sector, particularly in terms of supporting sustainable business practices and enhancing profitability. Technology-organization-environment model and the triple bottom line technique were both used in this study to estimate the influence of technological factors, organizational factors, and environmental factors on social, environmental (planet), and economic. The data for this research was collected through a structured questionnaire containing closed questions. A total of 327 participants responded to the questionnaire from different professionals in the cars sector. The study was conducted in the cars industry, where the problem of the study revolved around addressing artificial intelligence in its various aspects and how it can affect sustainable business practices and firms’ profitability. The study highlights that the cars industry sector can be transformed significantly by using AI and data analytics within the TOE framework and with a focus on triple bottom line (TBL) outputs. However, in order to fully benefit from these advantages, new technologies need to be implemented while maintaining moral and legal standards and continuously developing them. This approach has the potential to guide the cars industry towards a future that is environmentally friendly, economically feasible, and socially responsible. The paper’s primary contribution is to assist professionals in the industry in strategically utilizing Artificial Intelligence and data analytics to advance and transform the industry.
Copyright © by EnPress Publisher. All rights reserved.