This study investigates the role of property quality in shaping booking intentions within the dynamic landscape of the hospitality sector. A comprehensive approach, integrating qualitative and quantitative methodologies, is employed, utilising Airdna’s dataset spanning from July 2016 to June 2020. Multiple regression models, including interaction terms, are applied to scrutinise the moderating role of property quality. The study unveils unexpected findings, particularly a counterintuitive negative correlation between property quality and booking intentions in Model 7, challenging conventional assumptions. Theoretical implications call for a deeper exploration of contextual nuances and psychological intricacies influencing guest preferences, urging a re-evaluation of established models within hospitality management. On a practical note, the study emphasises the significance of continuous quality improvement and dynamic strategies aligned with evolving consumer expectations. The unexpected correlation prompts a shift towards more context-specific approaches in understanding and managing guest behavior, offering valuable insights for both academia and the ever-evolving landscape of the hospitality industry.
The goal of this work was to create and assess machine-learning models for estimating the risk of budget overruns in developed projects. Finding the best model for risk forecasting required evaluating the performance of several models. Using a dataset of 177 projects took into account variables like environmental risks employee skill level safety incidents and project complexity. In our experiments, we analyzed the application of different machine learning models to analyze the risk for the management decision policies of developed organizations. The performance of the chosen model Neural Network (MLP) was improved after applying the tuning process which increased the Test R2 from −0.37686 before tuning to 0.195637 after tuning. The Support Vector Machine (SVM), Ridge Regression, Lasso Regression, and Random Forest (Tuned) models did not improve, as seen when Test R2 is compared to the experiments. No changes in Test R2’s were observed on GBM and XGBoost, which retained same Test R2 across different tuning attempts. Stacking Regressor was used only during the hyperparameter tuning phase and brought a Test R2 of 0. 022219.Decision Tree was again the worst model among all throughout the experiments, with no signs of improvement in its Test R2; it was −1.4669 for Decision Tree in all experiments arranged on the basis of Gender. These results indicate that although, models such as the Neural Network (MLP) sees improvements due to hyperparameter tuning, there are minimal improvements for most models. This works does highlight some of the weaknesses in specific types of models, as well as identifies areas where additional work can be expected to deliver incremental benefits to the structured applied process of risk assessment in organizational policies.
In developing countries, urban mobility is a significant challenge due to convergence of population growth and the economic attraction of urban centers. This convergence of factors has resulted in an increase in the demand for transport services, affecting existing infrastructure and requiring the development of sustainable mobility solutions. In order to tackle this challenge, it is necessary to create optimal services that promote sustainable urban mobility. The main objective of this research is to develop and validate a comprehensive methodology framework for assessing and selecting the most sustainable and environmentally responsible urban mobility services for decision makers in developing countries. By integrating fuzzy multi-criteria decision-making techniques, the study aims to address the inherent complexity and uncertainty of urban mobility planning and provide a robust tool for optimizing transportation solutions for rapid urbanization. The proposed methodology combines three-dimensional fuzzy methods of type-1, including AHP, TOPSIS and PROMETHEE, using the Borda method to adapt subjectivity, uncertainty, and incomplete judgments. The results show the advantages of using integrated methods in the sustainable selection of urban mobility systems. A sensitivity analysis is also performed to validate the robustness of the model and to provide insights into the reliability and stability of the evaluation model. This study contributes to inform decision-making, improves policies and urban mobility infrastructure, promotes sustainable decisions, and meets the specific needs of developing countries.
Sustainability in road construction projects is hindered by the extensive use of non-renewable materials, high greenhouse gas emissions, risk cost, and significant disruption to the local community. Sustainability involves economic, environmental, and social aspects (triple bottom line). However, establishing metrics to evaluate economic, environmental, and social impacts is challenging because of the different nature of these dimensions and the shortage of accepted indicators. This paper developed a comprehensive method considering all three dimensions of sustainable development: economic, environmental, and social burdens. Initially, the economic, environmental, and social impact category indicators were assessed using the Life cycle approach. After that, the Analytic Hierarchy Process (AHP) method and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) were utilized to prioritize the alternatives according to the acquired weightings and sustainable indicators. The steps of the AHP method involve forming a hierarchy, determining priorities, calculating weighting factors, examining the consistency of these assessments, and then determining global priorities/weightings. The TOPSIS method is conducted by building a normalized decision matrix, constructing the weighted normalized decision matrix, evaluating the positive and negative solutions, determining the separation measures, and calculating the relative closeness to the ideal solution. The selected alternative performs the highest Relative Closeness to the Ideal Solution. Lastly, a case study was undertaken to validate the proposed method. In three alternatives in the case study (Cement Concrete, Dense-Graded Polymer Asphalt Concrete, and Dense-Graded Asphalt Concrete), option 3 showed the most sustainable performance due to its highest Relative Closeness to the Ideal Solution. Integrating AHP and TOPSIS methods combines both strengths, including AHP’s structured approach for determining criteria weights through pairwise comparisons and TOPSIS’s ability to rank choices based on their proximity to an ideal solution.
This research aims to investigate the factors shaping the investment choices of individuals in Saudi Arabia concerning cryptocurrencies, particularly focusing on the influence of the Fear of Missing Out (FOMO) psychological phenomenon. This study employs a mixed-methods approach to comprehend the factors influencing Saudi investors' decisions in the cryptocurrency realm. Quantitative surveys are conducted to gauge perceptions of risk, return, regulatory factors, and social influence. Additionally, qualitative interviews delve into the nuanced interplay of these elements and the impact of FOMO on decision-making. Integrating the Theory of Planned Behavior and Behavioral Finance theories, this research offers a holistic understanding of cryptocurrency investment determinants. The combined quantitative and qualitative methods provide a comprehensive view, enabling an in-depth analysis of the subject matter. The study reveals that Saudi Arabian investors' decisions regarding cryptocurrencies are significantly influenced by multiple factors, including perceived risk, potential return, regulatory environment, and social dynamics. FOMO emerges as a crucial psychological factor, interacting with these influences and driving decision-making. This research underscores the intricate interplay between these factors and FOMO, shedding light on the dynamics of cryptocurrency investment choices in the Saudi Arabian market. The findings hold implications for policymakers, financial institutions, and investors seeking deeper insights into this evolving landscape. Drawing from the Theory of Planned Behavior and Behavioral Finance, it examines perceived risk, return, regulatory factors, and social influence in influencing cryptocurrency investment choices among Saudi investors, focusing on the influence of Fear of Missing Out (FOMO). The research outcome provides insights for policymakers, financial institutions, and investors seeking to understand cryptocurrency investment dynamics in Saudi Arabia.
Adopting electric vehicles (E.V.) is crucial for promoting sustainable mobility in metropolitan areas such as Medan, Indonesia. To achieve this, it is essential to comprehend the factors that influence E.V. adoption, with a particular focus on the impact of media. This study examines the adoption of electric vehicles in Medan and evaluates the influence of the media on the public’s perception and policy decisions. Opinions, concerns, and recommendations surrounding electric vehicles were examined through surveys and interviews with 35 stakeholders, including students, lawmakers, industry experts, business owners, and media professionals. The findings indicate a strong knowledge and favorable perception of electric vehicles in Medan. However, there are worries regarding the expenses associated with E.V.s and the availability of charging infrastructure. Notably, 60% of the respondents identified media as their primary source of information, highlighting its significant influence. Encouraging cooperation between media, professionals, and stakeholders is advisable to achieve accurate and balanced reporting. This can be done by employing techniques like showcasing success stories and emphasizing the environmental advantages to encourage acceptance and implementation. This study provides valuable insights into improving the adoption of electric vehicles in Medan. It emphasizes the significance of implementing effective media strategies and supportive policies to achieve sustainable transportation solutions.
Copyright © by EnPress Publisher. All rights reserved.