The rapidly growing construction industry often deals with complex and dynamic projects that pose significant safety risks. One of the state-owned companies in Indonesia is engaged in large-scale toll road construction projects with a high incidence of workplace accidents. This study aims to improve safety performance in toll road construction by implementing the Scrum framework. The study uses a System Dynamics approach to model interactions between the Scrum framework, project management, and work safety subsystems. Various scenarios were designed by modifying controlled variables and system structures, including introducing a punishment entity. These scenarios were evaluated based on their impact on reducing incidents and the incident rate over the project period. The results indicate that the combined scenario significantly reduces incidents and incident rates in different conditions. The study also finds a strong relationship between Scrum framework implementation and improved safety performance, demonstrating a reduction in incidents and incident rates by over 50% compared to existing conditions. This research underlines the effectiveness of the Scrum framework in enhancing safety in construction projects.
The construction of gas plants often experiences delays caused by various factors, which can lead to significant financial and operational losses. This research aims to develop an accurate risk model to improve the schedule performance of gas plant projects. The model uses Quantitative Risk Analysis (QRA) and Monte Carlo simulation methods to identify and measure the risks that most significantly impact project schedule performance. A comprehensive literature review was conducted to identify the risk variables that may cause delays. The risk model, pre-simulation modeling, result analysis, and expert validation were all developed using a Focused Group Discussion (FGD). Primavera Risk Analysis (PRA) software was used to perform Monte Carlo simulations. The simulation output provides information on probability distribution, histograms, descriptive statistics, sensitivity analysis, and graphical results that aid in better understanding and decision-making regarding project risks. The research results show that the simulated project completion timeline after mitigation suggested an acceleration of 61–65 days compared to the findings of the baseline simulation. This demonstrates that activity-based mitigation has a major influence on improving schedule performance. This research makes a significant contribution to addressing project delay issues by introducing an innovative and effective risk model. The model empowers project teams to proactively identify, measure, and mitigate risks, thereby improving project schedule performance and delivering more successful projects.
Delay is the leading challenge in completing Engineering, Procurement, and Construction (EPC) projects. Delay can cause excess costs, which reduces company profits. The relationship between subcontractors and the main contractor is a critical factor that can support the success of an EPC project. The problematic financial condition of the main contractor can cause delay in payments to subcontractors. This research will set a model that combines the system dynamics and earned value method to describe the impact of subcontractor advance payments on project performance. The system dynamics method is used to model and analyze the impact of interactions between variables affecting project performance, while the earned value method is applied to quantitatively evaluate project performance and forecast schedule and cost outcomes. These two methods are used complementarily to achieve a holistic understanding of project dynamics and to optimize decision-making. The designed model selects the optimum scenario for project time and costs. The developed model comprises project performance, costs, cash flow, and performance forecasting sub-models. The novelty in this research is a new model for optimizing project implementation time and costs, adding payment rate variables to subcontractors and subcontractor performance rates. The designed model can provide additional information to assist project managers in making decisions.
Space is a product of society. Driven by industrialization, urbanization, informatization and government policies, China’s rural space is undergoing drastic reconstruction. As one of the core contents of international rural geography research, rural space research are multi-disciplinary, multi perspective, multi-dimensional and multi-method, forming a rich research field. In order to comprehensively grasp the progress of rural space research abroad, this study reviewed international rural space research literature in recent 40 years. The study found that foreign scholars described the connotation of rural space from the aspects of material, imagination and practice, emphasize the importance of daily life practice. It introduced living space to construct a more systematic research framework of rural space by establishing a “three-fold model of rural space”. With regard to the theoretical perspective, international research on rural space has experienced three stages: functionalism, political economics and social constructivism. In the evolution of time, it has realized the transformation from productivism to post-productivism; in the spatial dimension, it realizes the multiple superposition of settlement space, economic space, social space and cultural space. As a whole, international research on rural space has realized the transformation from material level to social representation, from objective space to subjective space, and from static one-dimensional space to dynamic multi-dimensional space, which enlightens us on the importance of interdisciplinary research and “social cultural” research on rural space. The construction of rural space in China needs to pay attention to the subject status of farmers and multifunction of rural space, respect the role of locality and difference of various places, and recover the function of production of meaning of rural space.
It has become commonplace to describe publicly provided infrastructure as being in a sorry state and to advance public-private partnership as a possible remedy. This essay adopts a skeptical but not a cynical posture toward those claims. The paper starts by reviewing the comparative properties of markets and politics within a theory of budgeting where the options are construction and maintenance. This analytical point of departure explains how incongruities between political and market action can favor construction over maintenance. In short, political entities can engage in an implicit form of public debt by reducing maintenance spending to support other budgetary items. This implicit form of public debt does not manifest in higher interest rates but rather manifests in crumbling bridges and other infrastructure due to the transfer of maintenance into other budgetary activities.
Copyright © by EnPress Publisher. All rights reserved.