Based on the collective forest with common use rights, the social-ecological system analysis framework and autonomous governance theory proposed by Elinor Ostrom are introduced in the forest eco-economic system to analyze the interaction logic among the first-level subsystems and the secondary variables of the forest eco-economic system and the variables related to the autonomous governance of the system to explore the synergistic mechanisms affecting the forest eco-economic system. The results show that: in the case of information asymmetry, collective actions of governmental and non-governmental organizations will aggravate the dilemma of forest eco-economic synergistic development; actors extract forest resource units from the forest resource system to achieve economic benefits; and renewable resources of forest ecosystems can be sustained in the long term when the average extraction rate of humans from forest ecosystems does not exceed the average replenishment rate.
The coupling coordination degree model is used to analyze the change law of the inherent coupling relationship between the forest economy and the ecological environment system in Heilongjiang Province from 2006 to 2018 and its causes. The results show that by combining the coupling relationship with the relative priority of under-forest economic development, the coupling relationship change can be divided into three stages, the coupling coordination degree from 2006 to 2009 is mainly on the verge of imbalance, and the under-forest economic development lags behind the development of the ecological environment. From 2010 to 2012, the coupling coordination degree changed from the reluctant coupling stage to the stage on the verge of imbalance, and the forest economy was ahead of the ecological environment development. From 2013 to 2018, the degree of coupling and coordination was in the reluctant coupling stage, and the under-forest economy and the ecological environment continued to develop in synchronize and in harmony. Therefore, according to the research results, it is proposed to establish the principle of ecological priority, adhere to the development of characteristics, improve the level of science and technology, and rationally develop the under-forest economic industry, so as to promote the coupling and coordinated development of the under-forest economy and ecological environment system in Heilongjiang Province.
Ecological environment damage events will destroy or damage the balance between animal and plant habitats and ecosystems, and even pose a threat to China’s ecological security. However, at present, there are some problems in the identification and evaluation of forest ecosystem damage, such as imperfect evaluation system, insufficient quantitative evaluation methods, imperfect damage compensation management system, and lack of analysis of the overall damage of the interaction between human activities and forest ecosystem. Based on the damaged object, the system involves a total of four first-class indicators, including physical damage, mental damage, economic forest fruit loss, forest by-products loss, processing and manufacturing loss, forest tourism loss, scientific research literature and history loss, soil conservation loss, water conservation loss, wind prevention and sand fixation loss, carbon fixation and oxygen release loss, atmospheric purification loss. There are 14 secondary indicators of emergency treatment fee and investigation and evaluation fee, as well as 22 tertiary indicators, and the value quantification method of each indicator is clarified by using market value method, alternative cost method, shadow engineering method, recovery cost method and other methods. The article also discusses the management system of forest ecosystem damage from the two aspects of forestry technology department and judicial administration department. The purpose is to provide reference for the quantification and standardization of forest ecosystem damage assessment technology and the improvement of management system.
Climate and vegetation are variables of the physical space that have a dynamic and interdependent relationship. Flora modifies climatic elements and gives rise to a microclimate whose characterization is a function of regional climatic conditions and vegetation structure. The objective of this work was to compare the climatic variations (inside and outside) of the Caldén Forest in the Parque Luro Provincial Reserve. Temperature, relative humidity, wind speed, wind direction and precipitation data from two meteorological stations for 2012 were analyzed and statistically compared. The influence of the forest on climatic parameters was demonstrated and it was found that the greatest variations were in wind speed, daily temperature and precipitation.
Root turnover is a key process of terrestrial ecosystem carbon cycle, which is of great significance to the study of soil carbon pool changes and global climate change. However, because there are many measurement and calculation methods of root turnover, the results obtained by different methods are quite different, and the current research on root turnover of forest ecosystem on the global regional scale is not sufficient, so the change law of root turnover of global forest ecosystem is still unclear. By collecting literature data and unifying the calculation method of turnover rate, this study integrates the spatial pattern of fine root turnover of five forest types in the world, and obtains the factors affecting fine root turnover of forest ecosystem in combination with soil physical and chemical properties and climate data. The results showed that there were significant differences in fine root turnover rate among different forest types, and it gradually decreased with the increase of latitude; the turnover rate of fine roots in forest ecosystem is positively correlated with annual average temperature and annual average precipitation; fine root turnover rate of forest ecosystem is positively correlated with soil organic carbon content, but negatively correlated with soil pH value. This study provides a scientific basis for revealing the law and mechanism of fine root turnover in forest ecosystem.
The effects of climate change are already being felt, including the failure to harvest several agricultural products. On the other hand, peatland requires good management because it is a high carbon store and is vulnerable as a contributor to high emissions if it catches fire. This study aims to determine the potential for livelihood options through land management with an agroforestry pattern in peatlands. The methods used are field observation and in-depth interviews. The research location is in Kuburaya Regency, West Kalimantan, Indonesia. Several land use scenarios are presented using additional secondary data. The results show that agroforestry provides more livelihood options than monoculture farming or wood. The economic contribution is very important so that people reduce slash-and-burn activities that can increase carbon emissions and threaten the sustainability of peatland.
Copyright © by EnPress Publisher. All rights reserved.