The number of domestic studies on "variational pragmatics" (Ren Yuxin, Chen Xinren, 2012) is very limited. The research scopes are also relatively limited, which has not yet attracted the attention of more researchers. Therefore, based on this book The Routledge Handbook of Second Language Acquisition and Pragmatics, this paper aims to sort out and summarize the development trend of pragmatics from the meaning, goal and theory of variational pragmatics, and then put forward suggestions for future research.
In order to continuously improve the level of kindergarten education and teaching, we use classroom observation to carry out diversified research and practice: in the classroom observation process, strict requirements: pre-class meeting, in-class observation, after-class reflection. Select the record sheet appropriate for the topic. After this set of procedures is fixed, the operation scale is involved. Classroom observation captures the interest of teachers, arouses their enthusiasm, and deeps the understanding of classroom observation. Based on the achievement degree of research objectives, the completion degree of research contents, and the application of various research methods, classroom observation is really implemented.
Homework is an indispensable basic link in classroom teaching, an important link in the consolidation of knowledge after class, and an important way for students to understand knowledge, digest knowledge, and improve their problem-solving ability. In the practice of mathematics teaching in primary schools, attention should be paid to the effectiveness of homework assignments in different links before, during and after class, and the content of homework should take into account the reality of students at different levels. This paper expounds the strategy of hierarchical design of mathematics homework from the aspects of the hierarchical design and arrangement of mathematics homework in the upper grades of primary school, aiming to effectively improve the quality of mathematics classroom teaching in the upper grades of primary school.
Tidal sea level variations in the Mediterranean basin, although altered and amplified by resonance phenomena in confined sub-basins (e.g., Adriatic Sea), are generally confined within 0.5 meters and exceptionally up to 1.5 meters. Here we explore the possibility of retrieving sea level measurements using data from GNSS antennas on duty for ground motion monitoring and analyze the spectral outcomes of such distinctive measurements. We estimate one year of GNSS data collected on the Mediterranean coasts in order to get reliable sea level data from all publicly available data and compare it with collocated tide gauges. A total of eleven stations were suitable for interferometric analysis (as of 2021), and all were able to supply centimeter-level sea level estimates. The spectra in the tidal frequency windows are remarkably similar to tide gauge data. We find that the O1 and M2 diurnal and semidiurnal tides and MK3, MS4 shallow sea water tides may be disturbed by aliasing effects.
The relationship between transport infrastructure and accessibility has long stood as a central research area in regional and transport economics. Often invoked by governments to justify large public spending on infrastructure, the study of this relationship has led to conflicting arguments on the role that transport plays in productivity. This paper expands the existing body of knowledge by adopting a spatial analysis (with spillover effects) that considers the physical effects of investment in terms of accessibility (using distinct metrics). The authors have used the Portuguese experience at regional level over the last 30 years as a case study. The main conclusions are as follows: i) the choice of transport variables matters when explaining productivity, and more complex accessibility indicators are more correlated with; ii) it is important to account for spill-over effects; and iii) the evidence of granger causality is not widespread but depends on the regions.
Hybrid nanofluids have several potential applications in various industries, including electronics cooling, automotive cooling systems, aerospace engineering, and biomedical applications. The primary goal of the study is to provide more information about the characteristics of a steady and incompressible stream of a hybrid nanofluid flowing over a thin, inclined needle. This fluid consists of two types of nanoparticles: non-magnetic nanoparticles (aluminium oxide) and magnetic nanoparticles (ferrous oxide). The base fluid for this nanofluid is a mixture of water and ethylene glycol in a 50:50 ratio. The effects of inclined magnetic fields and joule heating on the hybrid nanofluid flow are considered. The Runge-Kutta fourth-order method is used to numerically solve the partial differential equations and governing equations, which are then converted into ordinary differential equations using similarity transformations. Natural convection refers to the fluid flow that arises due to buoyancy forces caused by temperature differences in a fluid. In the context of an inclined needle, the shape and orientation of the needle have significantly affected the flow patterns and heat transfer characteristics of the nanofluid. These analyses protest that raising the magnetic parameter results in an increase in the hybrid nanofluid thermal profile under slip circumstances. Utilizing the potential of hybrid nanofluids in a variety of technical applications, such as energy systems, biomedicine, and thermal management, requires an understanding of and ability to manipulate these effects.
Copyright © by EnPress Publisher. All rights reserved.