Hydroponics is a modern agricultural system that enables year-round plant growth. Biochar, derived from apple tree waste, and humic acid were investigated as a replacement for the Hoagland nutrient solution to grow strawberries in a greenhouse with three replications. Growth parameters, such as leaf area, the average number of fruits per plant, maximum fruit weight, and the weight of fresh and dry fruits, were measured. A 50% increase in fresh and dry fruit weight was observed in plants grown using biochar compared to the control. Additionally, the use of Hoagland chemical fertilizer led to a 25% increase in both fresh and dry weight. There was a 65% increase in the number of fruits per plant in the biochar-grown sample compared to the control. Moreover, biochar fertilizer caused a 100% increase in maximum fruit weight compared to the control and a 27% increase compared to the Hoagland chemical fertilizer. Biochar had a higher pH compared to the Hoagland solution, and such pH levels were conducive to strawberry plant growth. The results indicate that biochar has the potential to enhance the size and weight of fruits. The findings of the study demonstrate that biochar, when combined with humic acid, is a successful organic hydroponic fertilizer that improves the quality and quantity of strawberries. Moreover, this approach enables the more efficient utilization of garden waste.
The most crucial factor in producing papaya seedlings successfully is seed germination. The purpose of this study was to investigate the influence of seed priming with growing media on seed germination and seedling growth of papaya from October to December 2022. The experimental treatments included three seed priming treatments: T0 = control (no seed priming treatments), T1 = GA3 (100 ppm), and T2 = KNO3 (1%), and four growing media, viz., M1 = soil + vermicompost (1:1), M2 = soil + cowdung (1:1), M3 = soil + cocopeat + vermicompost (1:1:1), and M4 = soil + cocopeat + cowdung (1:1:1). The treatments showed a significant effect on different parameters such as germination percentage, days to germination, survival percentage, chlorophyll content, seed vigor index, shoot, and root length. GA3 treated seedlings performed better than non-GA3-treated seedlings. Among the growing media, M3 showed the best for seed germination and other growth attributes compared to other growing media. In terms of interaction effects, T1M3 showed the highest performance for germination percentage (84.33%), survival percentage (91.0%), and chlorophyll content (44.26%). T1M3 also showed the highest seed vigor index, shoot and root growth, and plant biomass. As a result, the combination of GA3 and growing media containing soil + cocopeat + vermicompost was shown to be the most favorable for papaya seed germination and seedling growth.
In higher eukaryotes, the genes’ architecture has become an essential determinant of the variation in the number of transcripts (expression level) and the specificity of gene expression in plant tissue under stress conditions. The modern rise in genome-wide analysis accounts for summarizing the essential factors through the translocation of gene networks in a regulatory manner. Stress tolerance genes are in two groups: structural genes, which code for proteins and enzymes that directly protect cells from stress (such as genes for transporters, osmo-protectants, detoxifying enzymes, etc.), and the genes expressed in regulation and signal transduction (such as transcriptional factors (TFs) and protein kinases). The genetic regulation and protein activity arising from plants’ interaction with minerals and abiotic and biotic stresses utilize high-efficiency molecular profiling. Collecting gene expression data concerning gene regulation in plants towards focus predicts an acceptable model for efficient genomic tools. Thus, this review brings insights into modifying the expression study, providing a valuable source for assisting the involvement of genes in plant growth and metabolism-generating gene databases. The manuscript significantly contributes to understanding gene expression and regulation in plants, particularly under stress conditions. Its insights into stress tolerance mechanisms have substantial implications for crop improvement, making it highly relevant and valuable to the field.
This research explores the implementation of streamlined licensing frameworks and consolidated procedures for promoting renewable energy generation worldwide. An in-depth analysis of the challenges faced by renewable energy developers and the corresponding solutions was identified through a series of industry interviews. The study aims to shed light on the key barriers encountered during project development and implementation, as well as the strategies employed to overcome these obstacles. By conducting interviews with professionals from the renewable energy sector, the research uncovers a range of common challenges, including complex permitting processes, regulatory uncertainties, grid integration issues, and financial barriers. These challenges often lead to project delays, increased costs, and limited investment opportunities, thereby hindering the growth of renewable energy generation. However, the interviews also reveal various solutions and best practices employed by industry stakeholders to address these challenges effectively. These solutions encompass the implementation of streamlined licensing procedures, such as single licenses and one-stop services, to simplify and expedite the permitting process. Additionally, the development of clear and stable regulatory frameworks, collaboration between public and private entities, and improved grid infrastructure were identified as key strategies to overcome regulatory and grid integration challenges. The research findings highlight the importance of collaborative efforts between policymakers, industry players, and other relevant stakeholders to create an enabling environment for renewable energy development. By incorporating the identified solutions and best practices, policymakers can streamline regulatory processes, foster public-private partnerships, and enhance grid infrastructure, thus catalyzing the growth of renewable energy projects.
The history of organic polymers is a remarkable journey from the discovery of natural materials like rubber and silk to the development of sophisticated synthetic polymers that have transformed industries and modern life. This comprehensive review article presents a detailed account of the evolution of organic polymers. It begins with the early uses of natural polymers and explores key breakthroughs, including the invention of Bakelite, nylon, and neoprene. The theoretical foundations of polymer science, laid by Hermann Staudinger, are discussed, and the post-war surge in polymer development is examined, including the introduction of polyethylene, polypropylene, and PVC. Notable advances in polymer chemistry, such as isotactic polypropylene and silicone polymers, are highlighted. The article also delves into the development of high-performance polymers like Kevlar and carbon-based materials, offering insights into their applications. Moreover, it discusses the current trends in polymer science, emphasizing sustainability and biodegradability. As the world continues to rely on polymers for numerous applications, this review provides a historical perspective and a glimpse into the future of organic polymers, where innovations are expected to shape various aspects of technology, healthcare, and environmental protection.
Copyright © by EnPress Publisher. All rights reserved.