Blockchain technology has increasingly attracted the attention of the financial service sector, customers, and investors because of its distinctive characteristics, such as transparency, security, reliability, and traceability. The paper is based on a Systematic Literature Review (SLR). The study comprehended the literature and the theories. It deployed the technology-organization-environment (TOE) model to consider technological, organizational, and environmental factors as antecedents of blockchain adoption intention. The paper contributes to blockchain literature by providing new insights into the factors that affect the intention to adopt blockchain technology. A theoretical model incorporates antecedents of blockchain adoption intention to direct an agenda for further investigations. Researchers can use the model proposed in this study to test the antecedents of blockchain adoption intention empirically.
Considering the application of the polymer electrolyte membrane fuel cell (PEMFC), the separator thickness plays a significant role in determining the weight, volume, and costs of the PEMFC. In addition, thermal management, i.e., temperature distribution is also important for the PEMFC system to obtain higher performance. However, there were few reports investigating the relation between the temperature profile and the power generation characteristics e.g., the current density distribution of PEMFC operated at higher temperatures (HT-PEMFC). This paper aims to study the impact of separator thickness on the temperature profile and the current density profile of HT-PEMFC. The impact of separator thickness on the gases i.e., H2, O2 profile of HT-PEMFC numerically was also studied using CFD software COMSOL Multiphysics in the paper. In the study, the operating temperature and the relative humidity (RH) of the supply gas were varied with the separator thickness of 2.0 mm, 1.5 mm, and 1.0 mm, respectively. The study revealed that the optimum thickness was 2.0 mm to realize higher power generation of HT-PEMFC. The heat capacity of the separator thickness of 2.0 mm was the biggest among the separators investigated in this study, resulting in the dry-up of PEM and catalyst layer was lower compared to the thinner separator thickness. It also clarified the effects of separator thickness of profile gases, e.g., O2, H2O, and current density profile became larger under the higher temperature and the lower RH conditions.
The present study aimed to determine the dynamic relationship between good governance, fiscal policy, and economic growth in Oman. In the context of the current study, researchers chose a quantitative approach to answer the research questions, utilizing the latest 2023 data from the World Bank and The Global Economy databases. The data for the current study was carefully selected using variables that represent aspects of governance, fiscal policies, and economic performance. Our analysis uses Ordinary Least Squares (OLS) regression and the Autoregressive Distributed Lag (ARDL) Model. These methods help us understand these factors’ immediate and long-term impacts on Oman’s economy. The results we obtained offer fascinating insights into the country’s economic dynamics. We observe bidirectional causal relationships between the Good Governance Index (GGI) and the Regulatory Quality Index (RQI) and economic growth, while Fiscal Policy Effectiveness (FPE), Government Efficiency Index (GEI), and the Rule of Law Index (RLI) exhibit unidirectional causality towards GDP. Budget Balance (BB) shows no causal relationship with GDP, implying external factors influence it. Additionally, moderation analysis underscores the significance of digital financial inclusion in amplifying the effects of governance and fiscal policies on economic growth. These findings hold practical implications for policymakers and stakeholders in Oman. Specifically, they highlight the importance of governance, regulatory quality, and effective fiscal policies in shaping the economic landscape. To foster sustainable economic development, efforts should improve governance, enhance fiscal policy effectiveness, and promote digital financial inclusion.
Low temperature is one of the most significant environmental factors that threaten the survival of subtropical and tropical plant species. By conducting a study, which was arranged in a completely randomized design with three replicates, the relative freezing tolerance (FT) of four Iranian pomegranate cultivars, including ‘Alak Torsh’, ‘Tabestaneh Torsh’, ‘Poost Sefid’, and ‘Poost Syah’, as well as its correlation with some biochemical indices, were investigated. From each cultivar, pieces of one-year-old shoot samples were treated with controlled freezing temperatures (−11, −14, and −17 ℃) to determine lethal temperatures (LT50) based on survival percentage, electrolyte leakage, phenolic leakage, and tetrazolium staining test (TST) methods. Results showed that FT was higher in the second year with a lower minimum temperature and a higher concentration of cryoprotectants. The stronger correlation of electrolyte leakage with survival percentage (r = 0.93***) compared to the other three indices explained that this index could be the most reliable injury index in determining the pomegranate FT to investigate freezing effects. Of all four cultivars, ‘Poost Syah’ was the hardest by presenting a higher FT than ~ −14 ℃ in mid-winter. Accordingly, this pomegranate cultivar seems to be promising to grow in regions with a higher risk of freezing and to be involved in breeding programs to develop novel commercial cultivars.
This research explores the implementation of streamlined licensing frameworks and consolidated procedures for promoting renewable energy generation worldwide. An in-depth analysis of the challenges faced by renewable energy developers and the corresponding solutions was identified through a series of industry interviews. The study aims to shed light on the key barriers encountered during project development and implementation, as well as the strategies employed to overcome these obstacles. By conducting interviews with professionals from the renewable energy sector, the research uncovers a range of common challenges, including complex permitting processes, regulatory uncertainties, grid integration issues, and financial barriers. These challenges often lead to project delays, increased costs, and limited investment opportunities, thereby hindering the growth of renewable energy generation. However, the interviews also reveal various solutions and best practices employed by industry stakeholders to address these challenges effectively. These solutions encompass the implementation of streamlined licensing procedures, such as single licenses and one-stop services, to simplify and expedite the permitting process. Additionally, the development of clear and stable regulatory frameworks, collaboration between public and private entities, and improved grid infrastructure were identified as key strategies to overcome regulatory and grid integration challenges. The research findings highlight the importance of collaborative efforts between policymakers, industry players, and other relevant stakeholders to create an enabling environment for renewable energy development. By incorporating the identified solutions and best practices, policymakers can streamline regulatory processes, foster public-private partnerships, and enhance grid infrastructure, thus catalyzing the growth of renewable energy projects.
Copyright © by EnPress Publisher. All rights reserved.