Richard’s equation was approximated by finite-difference numerical scheme to model water infiltration profile in variably unsaturated soil[1]. The published data of Philip’s semi-analytical solution was used to validate the simulated results from the numerical scheme. A discrepancy was found between the simulated and the published semi-analytical results. Morris method as a global sensitivity tool was used as an alternative to local sensitivity analysis to assess the results discrepancy. Morris method with different sampling strategies were tested, of which Manhattan distance method has resulted a better sensitivity measures and also a better scan of input space than Euclidean method. Moreover, Morris method at p = 2 , r = 2 and Manhattan distance sampling strategy, with only 2 extra simulation runs than local sensitivity analysis, was able to produce reliable sensitivity measures (μ*, σ). The sensitivity analysis results were cross-validated by Sobol’ variance-based method with 150,000 simulation runs. The global sensitivity tool has identified three important parameters, of which spatial discretization size was the sole reason of the discrepancy observed. In addition, a high proportion of total output variance contributed by parameters β and θs is suggesting a greater significant digits to reduce its input uncertainty range.
Two kinds of solar thermal power generation systems (trough and tower) are selected as the research objects. The life cycle assessment (LCA) method is used to make a systematic and comprehensive environmental impact assessment on the trough and tower solar thermal power generation. This paper mainly analyzes the three stages of materials, production and transportation of two kinds of solar thermal power generation, calculates the unit energy consumption and environmental impact of the three stages respectively, and compares the analysis results of the two systems. At the same time, Rankine cycle is used to compare the thermal efficiency of the two systems.
The objective of the present study is to observe the surface morphology, structure and elemental composition of the ash particles produced from some thermal power stations of India using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDXA). This information is useful to better understand the ash particles before deciding its utility in varied areas.
Distributed biomass energy technology has strong adaptability to the types of raw materials, flexible project scale, can meet the needs of special users, better economy in small scale, easier commercial development, in line with the characteristics of biomass resources and China’s national conditions. The distributed utilization of biomass energy mainly includes biomass briquette fuel and biogas. The key technologies include biomass briquette fuel processing and combustion, large and medium-sized biogas engineering technology, biomass gasification pyrolysis and gas utilization. At present, China’s distributed biomass energy technology is mainly in the stage of technological improvement and application demonstration. It is expected that by 2030, most of the key technologies will be basically mature and have the conditions for industrialization. The main development direction of China’s distributed biomass energy industry is the replacement of traditional coal-fired gas, urban/rural clean living energy supply, and rural ecological environmental protection. The pollution caused by burning coal/fuel oil, and at the same time centering on the national new urbanization strategy, provide sustainable clean energy for the construction of new rural areas, and improve the level of rural ecological and environmental protection. At present, the main bottleneck restricting the development of distributed biomass energy industry is economy and reliability. The state should increase investment in technological innovation and policy support, convert the environmental and social benefits of biomass energy into cost benefits, and promote biomass energy. The development of the industry can be distributed and utilized.
Plasma thermal gasification can be one of the most relevant and environmentally friendly technologies for waste treatment and has gained interest for its use in thethermos-conversion of biomass. In this perspective, the objective of this study is to evaluate the gasification of sugarcane bagasse by studying the effective areas of operation of this process and to establish a comparison with conventional autothermal gasification. A thermochemical equilibrium model was used to calculate the indicators that characterize the performance of the process on its own and integrated with a combined cycle. As a result, it was obtained that plasma and gasification of bagasse is technically feasible for the specific net electrical production of 4 MJ with 30 % electrical efficiency, producing a gas with higher calorific value than autothermal gasification. The operating points where the electrical energy production and the cold gas efficiency reach their highest values were determined; then the effects of the operational parameters on these performance indicators were analyzed.
Based on 898 English documents and 363 Chinese documents citing the Rising of Network Society, it studied that the knowledge contribution of citation content analysis and citation context analysis methods, and the knowledge contribution of Chinese and foreign quotations to human geography. The study found that “mobile space” is the most quoted theoretical view in domestic and foreign literature, and the proportion of domestic research is significantly higher than foreign research; the focus of domestic and foreign research focuses on the external spatial form and its transformation, while foreign research pays more attention on the internal spatial dynamics of network society and three types of knowledge contributions, reflecting the influence of “network social theory” on human geography. Among them, critical references reveal the shortcomings of “network social theory” point out the abstraction of “spatial duality” the importance of local space, and the limitations of research data, methods, and time background, which provides new enlightenment for the future application and innovation of “network social theory” in the field of human geography.
Copyright © by EnPress Publisher. All rights reserved.