To address the problem that the imaging inversion method based on a single model in integrated aperture imaging is difficult to effectively correct model errors and perform accurate image reconstruction, a dual-model (DM)-based integrated aperture imaging inversion method is proposed for correcting the parametric errors of the inversion model and performing highly accurate millimeter-wave image reconstruction of the target scene. In view of the different parameter sensitivities of the Fourier transform (MFFT) model and the G-matrix (GM) model, the proposed DM method first corrects the imaging parameters with errors accurately by comparing the reconstruction errors of the two models; then recon-structs a high-precision target image based on the accurate GM model with the help of an improved regularization method. It is proved by simulation experiments that the proposed DM method can effectively correct the parameter errors of the imaging model and reconstruct the target scene with high accuracy in millimeter wave images compared with the traditional single-model imaging method.
Problem: in recent years, new studies have been published on biological effects of strong static magnetic fields and on thermal effects of high-frequency electromagnetic fields as used in magnetic resonance imaging (MRI). Many of these studies have not yet been incorporated into current safety recommendations. Method: scientific publications from 2010 onwards on the biological effects of static and electromagnetic fields of MRI were searched and evaluated. Results: new studies confirm older work that has already described effects of static magnetic fields on sensory organs and the central nervous system accompanied by sensory perception. A new result is the direct effect of Lorentz forces on ionic currents in the semicircular canals of the vestibular organ. Recent studies on thermal effects of radiofrequency fields focused on the development of anatomically realistic body models and more accurate simulation of exposure scenarios. Recommendation for practice: strong static magnetic fields can cause unpleasant perceptions, especially dizziness. In addition, they can impair the performance of the medical personnel and thus potentially endanger patient safety. As a precaution, medical personnel should move slowly in the field gradient. High-frequency electromagnetic fields cause tissues and organs to heat up in patients. This must be taken into account in particular for patients with impaired thermoregulation as well as for pregnant women and newborns; exposure in these cases must be kept as low as possible.
Copyright © by EnPress Publisher. All rights reserved.