This paper examines the effect of governance in Sub-Saharan African (SSA) countries. Specifically, this study investigates (i) the interacting impact of government efficiency, regulatory quality, and the rule of law alongside other socioeconomic variables to determine foreign capital inflow (FCI) based on each economic SSA bloc; and (ii) the characteristic drivers of FCI, impacting economic growth in the SSA countries. Descriptive statistics, static models, least square dummy variables (LSDVs) and the dynamic system general method of moment (GMM) were employed as the study’s estimating techniques. Based on the result of the LSDV, food security and the rule of law significantly impact FCI in the sub-economic blocs in the region. Only six countries across the four economic blocs responded to food security and the rule of law in the model. The dynamic system-GMM provided evidence of five socioeconomic variables and three governance variables contributing to FCI. The findings revealed (i) regulatory quality and the rule of law are governance variables that significantly impacted FCI; and (ii) food security failed to significantly impact FCI in the SSA region. However, inflation, life expectancy, the human capital index, exchange rate and gross domestic product (GDP) growth impacted FCI significantly. In the aggregate, inflation, regulatory quality, exchange rate and the human capital index exhibited positive relationships, while other variables such as life expectancy, government effectiveness and the rule of law appeared significant but inversely impacted FCI in the SSA region. The key policy implication recommendation from this study is that a good legal framework could moderate the flow of foreign capital in favour of growth as it creates a strong foundation for sustainable economic development in the region.
Fire hazard is often mapped as a static conditional probability of fire characteristics’ occurrence. We developed a dynamic product for operational risk management to forecast the probability of occurrence of fire radiative power in the locally possible near-maximum fire intensity range. We applied standard machine learning techniques to remotely sensed data. We used a block maxima approach to sample the most extreme fire radiative power (FRP) MODIS retrievals in free-burning fuels for each fire season between 2001 and 2020 and associated weather, fuel, and topography features in northwestern south America. We used the random forest algorithm for both classification and regression, implementing the backward stepwise repression procedure. We solved the classification problem predicting the probability of occurrence of near-maximum wildfire intensity with 75% recall out-of-sample in ten annual test sets running time series cross validation, and 77% recall and 85% ROC-AUC out-of-sample in a twenty-fold cross-validation to gauge a realistic expectation of model performance in production. We solved the regression problem predicting FRP with 86% r2 in-sample, but out-of-sample performance was unsatisfactory. Our model predicts well fatal and near-fatal incidents reported in Peru and Colombia out-of-sample in mountainous areas and unimodal fire regimes, the signal decays in bimodal fire regimes.
Although dykes are a predominant and widely distributed phenomenon in S-Algeria, N-Mali and N-Niger, a systematic, standardized inventory of dykes covering these areas has not been published so far. Remote sensing and geo information system (GIS) tools offer an opportunity for such an inventory. This inventory is not only of interest for the mining industry as many dykes are related to mineral occurrence of economic value, but also for hydrogeologic investigations (dykes can form barriers for groundwater flow). Surface-near dykes, major fault zones, volcanic and structural features were digitized based on Landsat 8 and 9, Sentinel 2, Sentinel 1 and ALOS PALSAR data. High resolution images of World Imagery files/ESRI and Bing Maps Aerial/Microsoft were included into the evaluations. More than 14,000 dykes were digitized and analyzed. The evaluations of satellite images allow a geomorphologic differentiation of types of dykes and the description of their characteristics such as dyke swarms or ring dykes. Dykes are tracing zones of weakness like faults and zones with higher geomechanically strain. Dyke density calculations were carried out in ArcGIS to support the detection of dyke concentrations as stress indicator. Thus, when occurring concentrated, they might indicate stressed areas where further magmatic and earthquake activity might potentially happen in future.
The importance of improving industrial transformation processes for more efficient ones is part of the current challenges. Specifically, the development of more efficient processes in the production of biofuels, where the reaction and separation processes can be intensified, is of great interest to reduce the energy consumption associated with the process. In the case of Biodiesel, the process is defined by a chemical reaction and by the components associated to the process, where the thermochemical study seeks to develop calculations for the subsequent understanding of the reaction and purification process. Thus, the analysis of the mixture of the components using the process simulator Aspen Plus V9® unravels the thermochemical study. The UNIFAC-DMD thermodynamic method was used to estimate the binary equilibrium parameters of the reagents using the simulator. The analyzed aspects present the behavior of the components in different temperature conditions, the azeotropic behavior and the determined thermochemical conditions.
The study examined the socio-demographic factors affecting access to and utilization of social welfare services in Yenagoa Local Government Area of Bayelsa State, Nigeria. Quantitative and qualitative approaches were adopted to select 570 respondents from the study area. Probability and non-probability sampling techniques were adopted in the selection of communities, and respondents. The quantitative data were analyzed using frequency distribution tables and percentages, while chi-square statistic was used to determine the relationship between socio-demographic variables and access to and utilization of social welfare services. The qualitative data were analyzed in themes as a complement to the quantitative data. This study reveals that although all the respondents reported knowing available social welfare services, 44.3% reported not having access to existing social services due to factors connected to serendipity variables, such as terrain condition, ethnicity and knowing someone in government. Therefore, the study recommends that the government and other stakeholders should push for the massive delivery of much-needed social welfare services to address the issue of welfare service deficit across the nation, irrespective of the ethnic group and whether the community is connected to the government of the day or not, primarily in rural areas.
Copyright © by EnPress Publisher. All rights reserved.