During and after the Covid-19 outbreak, people’s precautionary measures of not visiting public venues like cinema halls or multiplexes were replaced by watching treasured videos or films in private settings. People are able to watch their favourite video contents on a variety of internet-connected gadgets thanks to advanced technologies. As a result, it appears that the Covid-19 outbreak has had a substantial impact on people’s inclination to continue using video streaming services. This study attempted to establish an integrated framework that describes how people change their health behaviours during pandemic conditions using the health belief model (HBM), as well as the mediating effect of HBM constructs over ECM constructs such as continuous intention to subscribe to OTT video streaming services among subscribers. The study looked at the impact of three perceived constructs, susceptibility, severity, and self-efficacy, on the confirmation/adoption of over-the-top (OTT) video streaming services during the lethal pandemic (Covid-19). The study focused on new OTT video streaming service subscribers, and 473 valid replies were collected. Path analysis and multivariate analytical methods, such as structural equation modelling (SEM), were used to estimate construct linkages in the integrated framework. Perceived severity has been identified as the most influential factor in confirmation/adoption, followed by perceived susceptibility. The results also showed that satisfied users/subscribers are more likely to use OTT video streaming services. The mediators, confirmation/adoption, perceived usefulness, and satisfaction were used to validate the influence of perceived susceptibility on continuance intention. Furthermore, contactless entertainment enhances security for users/subscribers by allowing them to be amused across several internet-based venues while adhering to social distance norms.
The use of artificial intelligence (AI) in the detection and diagnosis of plant diseases has gained significant interest in modern agriculture. The appeal of AI arises from its ability to rapidly and precisely analyze extensive and complex information, allowing farmers and agricultural experts to quickly identify plant diseases. The use of artificial intelligence (AI) in the detection and diagnosis of plant diseases has gained significant attention in the world of agriculture and agronomy. By harnessing the power of AI to identify and diagnose plant diseases, it is expected that farmers and agricultural experts will have improved capabilities to tackle the challenges posed by these diseases. This will lead to increased effectiveness and efficiency, ultimately resulting in higher agricultural productivity and reduced losses caused by plant diseases. The use of artificial intelligence (AI) in the detection and diagnosis of plant diseases has resulted in significant benefits in the field of agriculture. By using AI technology, farmers and agricultural professionals can quickly and accurately identify illnesses affecting their crops. This allows for the prompt adoption of appropriate preventative and corrective actions, therefore reducing losses caused by plant diseases.
To address gaps in practical skills among Public Health and Preventive Medicine graduates, an ‘open collaborative practice teaching model’ integrating medicine, teaching, and research was introduced. A cross-sectional study surveyed 312 Preventive Medicine undergraduates at a Yunnan medical university from 2020 to 2023, utilizing satisfaction scores and analyses (cluster, factor, SWOT) to assess the impact of the reform. Satisfaction scores from baseline, mid-term, and end-term assessments showed minor variations (4.30, 4.29, 4.36), with dissatisfaction primarily related to teaching content and methods. Key influences on satisfaction included teaching content, methods, and effectiveness. The SWOT analysis highlighted the importance of continuously updating teaching strategies to meet changing student expectations. This study suggests that the model has the potential for wider use in enhancing public health education, particularly in regions facing similar challenges.
This study evaluates the health and sustainability of higher education systems in nine countries: the USA, UK, Australia, Germany, Canada, China, Brazil, India, and South Africa. Using a multi-level analysis model and principal component analysis (PCA), nine key factors—such as international student numbers, academic levels, and graduate employment rates—were identified, capturing over 90% of the cumulative impact on higher education systems. India, scoring 6.2036 initially, shows significant room for improvement. The study proposes policies to increase graduate employment, promote international faculty collaboration, and enhance India’s educational expenditure, which surpasses 9.8% of GDP. Post-policy simulations suggest India’s score could rise to 8.7432. The paper also addresses the impact of COVID-19 on global education, recommending a hybrid model and increased graduate enrollment in China to reduce unemployment by 5.4%. The research aims to guide sustainable development in higher education globally.
Background: In healthcare, research is essential for improving disease diagnosis and treatment, patient outcomes, and resource management, while fostering evidence-based practice. However, conducting research in this sector can be challenging, and healthcare workers may face various obstacles while engaging in research activities. Therefore, understanding healthcare workers’ attitudes toward research participation is essential for overcoming barriers and increasing research engagement. In this study, these aspects are examined through the analysis of survey data from a tertiary healthcare institution in Saudi Arabia. Method: Data obtained via a survey conducted between April and November 2022 among the healthcare workers and employees at a tertiary care hospital in Saudi Arabia were analyzed using descriptive and bivariate statistics. Results: The study sample comprised 713 respondents, 61.71% of whom were female, 58.06% were 26–41 years old, and 72.93% had not undertaken any research as employees or affiliates. A significant association was noted between age group and time constraints (p = 0.004) and lack of opportunity for research (p = 0.00), which were among the identified barriers to research participation. A significant association was also found between gender and barriers to pursuing research (p = 0.012). When the 193 (27.07%) participants who conducted research were asked about the challenges they encountered during this process, gender was significantly associated with difficulties in allocating time for conducting research (p = 0.042) and challenges in accessing journals and references (p = 0.016). Conclusion: The study findings highlight the importance of addressing the barriers and challenges in promoting positive attitudes toward research participation among healthcare workers considering their gender and age. In this manner, healthcare institutions can adopt an environment conducive for professional research engagement.
Hazards are the primary cause of occupational accidents, as well as occupational safety and health issues. Therefore, identifying potential hazards is critical to reducing the consequences of accidents. Risk assessment is a widely employed hazard analysis method that mitigates and monitors potential hazards in our everyday lives and occupational environments. Risk assessment and hazard analysis are observing, collecting data, and generating a written report. During this process, safety engineers manually and periodically control, identify, and assess potential hazards and risks. Utilizing a mobile application as a tool might significantly decrease the time and paperwork involved in this process. This paper explains the sequential processes involved in developing a mobile application designed for hazard analysis for safety engineers. This study comprehensively discusses creating and integrating mobile application features for hazard analysis, adhering to the Unified Modeling Language (UML) approach. The mobile application was developed by implementing a 10-step approach. Safety engineers from the region were interviewed to extract the knowledge and opinions of experts regarding the application’s effectiveness, requirements, and features. These interview results are used during the requirement gathering phase of the mobile application design and development. Data collection was facilitated by utilizing voice notes, photos, and videos, enabling users to engage in a more convenient alternative to manual note-taking with this mobile application. The mobile application will automatically generate a report once the safety engineer completes the risk assessment.
Copyright © by EnPress Publisher. All rights reserved.