Countering cyber extremism is a crucial challenge in the digital age. Social media algorithms, if designed and used properly, have the potential to be a powerful tool in this fight, development of technological solutions that can make social networks a safer and healthier space for all users. this study mainly aims to provide a comprehensive view of the role played by the algorithms of social networking sites in countering electronic extremism, and clarifying the expected ease of use by programmers in limiting the dissemination of extremist data. Additionally, to analyzing the intended benefit in controlling and organizing digital content for users from all societal groups. Through the systematic review tool, a variety of previous literature related to the applications of algorithms in the field of online radicalization reduction was evaluated. Algorithms use machine learning and analysis of text and images to detect content that may be harmful, hateful, or call for violence. Posts, comments, photos and videos are analyzed to detect any signs of extremism. Algorithms also contribute to enhancing content that promotes positive values, tolerance and understanding between individuals, which reduces the impact of extremist content. Algorithms are also constantly updated to be able to discover new methods used by extremists to spread their ideas and avoid detection. The results indicate that it is possible to make the most of these algorithms and use them to enhance electronic security and reduce digital threats.
This research explores the role of social media in the political construction of identity, analyzing how these platforms mediate the expression and formation of individual and group political identities. The focus is on how social media changes the dynamics of communication and social interaction, facilitating the formation of “echo chambers” and increasing political polarization. Additionally, this study highlights challenges such as disinformation and the implications of social media for the health of democracy. As a researcher, I aim to highlight the broader implications of using social media in identity politics. By analyzing the impact of social media on political dynamics in Indonesia, this study reveals how social media influences public perception and political decisions. This study identifies how social media can be used as a tool to mobilize political support, but also how these platforms can spread disinformation and reinforce political polarization. Based on these concerns, researchers have not yet found research results that examine how social media specifically impacts the construction of political identity. This research aims to highlight how social media not only acts as a communication tool but also as a medium that influences the way individuals view and express their political identity. Through a qualitative approach, this study provides new insights into the impact of social media in contemporary political dynamics and the importance of digital literacy in addressing issues of identity politics in the digital era.
Purpose: This study empirically investigates the effect of big data analytics (BDA) on project success (PS). Additionally, in this study, the investigation includes an examination of how intellectual capital (IC) and (KS) act as mediators in the correlation between BDA and KS. Lastly, a connection between entrepreneurial leadership (EL) and BDA is also explored. Design/Methodology- Using a sample of 422 senior-level employees from the IT sector in Peru. The partial least squares structural equation modeling technique tested the hypothesized relationships. Findings- According to the findings, the relationship between BDA and PS is mediated by structural capital (SC) and relational capital (RC), and BDA demonstrates a positive and noteworthy correlation with PS. Furthermore, EL is positively associated with BDA in a significant manner. Practical implications- The finding of this study reinforce the corporate experience of BDA and suggest how senior levels of the IT sector can promote SC, RC, and EL. Originality/Value- This study is one of the first to consider big data analytics as an important antecedent of project success. With little or no research on the interrelationship of big data analytics, intellectual capital and knowledge sharing the study contributes by investigating the mediating role of intellectual capital and knowledge sharing on the relationship between big data analytics and project success.
Purpose: Drawing on the Resource Based View (RBV) and Dynamic Capabilities Theory (DCT), the study seeks to investigate the impact of Big Data Analytics (BDA) on Project Success (PS) through Knowledge Sharing (KS) and Innovation Performance (IPF). Design/Methodology: Survey data were collected from 422 senior-level employees in IT companies, and the proposed relationships were assessed using the SMART-PLS 4 Structural Equation Modeling tool. Findings: The results show a positive and significant indirect effect of big data analytics on project success through knowledge sharing. IPF significantly mediated the relationship between BDA and PS in IT companies. Originality/Value: This study is one of the first to consider big data analytics as an essential antecedent of project success. With little or no research on the interrelationship of big data analytics, knowledge sharing, innovation performance, and organizational performance, the study investigates the mediating role of knowledge sharing and innovation performance on the relationship between BDA and PS. Implications: This study, grounded in RBV and DCT, investigates BDA’s influence on PS through KS and IPF. Implications encompass BDA’s strategic role, KS and IPF mediation, and practical and research-based insights. Findings guide BDA integration, collaborative cultures, and sustained success.
This research conducts a comparative urban analysis of two coastal cities with analogous tourism models situated in distinct geographical regions: Balneário Camboriú in Brazil and Benidorm in Spain. The study delves into two critical urban phenomena impacting the sustainability of tourist cities, utilising social network data to gather insights into economic and urban activities (Google Places) and spatio-temporal patterns of citizen presence (Twitter). The spatial analysis explores the municipal and, to a more detailed extent, the coastal strip extending 500 m inland from the coastline, spanning the entire length of each city to their municipal boundaries. The analysis uncovers both similarities and differences between the two destinations, offering insights that could inform future development strategies aimed at fostering sustainable urban environments in these well-established coastal tourist areas.
Copyright © by EnPress Publisher. All rights reserved.