The technological development and growth of the telecommunications industry have had a great positive impact on the education, health, and economic sectors, among others. However, they have also increased rivalry between companies in the market to keep and acquire new customers. A lower level of market concentration is related to a higher level of competitiveness among companies in the sector that drives a country’s socioeconomic development. To guarantee and improve the level of competition, it is necessary to monitor the concentration level in the telecommunications market to plan and develop appropriate strategies by governments. With this in mind, the present work aims to analyze the concentration prediction in the telecommunications market through recurrent neural networks and the Herfindahl-Hirschman index. The results show a slight gradual increase in competition in terms of traffic and access, while a more stable concentration level is observed in revenues.
Over the past decade, the integration of technology, particularly gamification, has initiated a substantial transformation within the field of education. However, educators frequently confront the challenge of identifying suitable competitive game-based learning platforms amidst the growing emphasis on cultivating creativity within the classroom and effectively integrating technology into pedagogical practices. The current study examines students and faculty continuous intention to use gamification in higher education. The data was collected through an online survey with a sample size of 763 Pakistani respondents from various universities around Pakistan. The structural equation modeling was used to analyze the data and to investigate how continuous intention to use gamification is influenced by, extended TAM model with inclusion of variables such as task technology fit, social influence, social recognition and hedonic motivation. The results have shown that task technology has no significant influence on perceived usefulness (PU) where as it has a significant influence on perceived ease of use (PEOU). Social influence (SI) indicates no significant influence on perceived ease of use. Social recognition (SR) indicates positive influence on perceived usefulness, perceived ease of use, and continuous intention. The dimensional analysis indicated that perceived ease of use has insignificant influence on perceived usefulness. Both PEOU and PU exhibit positive influence on attitude. Hedonic motivation (HM) and attitude were observed to have a positive influence on continuous intention (CI). Moreover, gamification is found to efficiently and effectively achieve meaningful goals by tapping intrinsic motivation of the users through engaging them in playful experiences.
This study explores the intricate relationship between emotional cues present in food delivery app reviews, normative ratings, and reader engagement. Utilizing lexicon-based unsupervised machine learning, our aim is to identify eight distinct emotional states within user reviews sourced from the Google Play Store. Our primary goal is to understand how reviewer star ratings impact reader engagement, particularly through thumbs-up reactions. By analyzing the influence of emotional expressions in user-generated content on review scores and subsequent reader engagement, we seek to provide insights into their complex interplay. Our methodology employs advanced machine learning techniques to uncover subtle emotional nuances within user-generated content, offering novel insights into their relationship. The findings reveal an inverse correlation between review length and positive sentiment, emphasizing the importance of concise feedback. Additionally, the study highlights the differential impact of emotional tones on review scores and reader engagement metrics. Surprisingly, user-assigned ratings negatively affect reader engagement, suggesting potential disparities between perceived quality and reader preferences. In summary, this study pioneers the use of advanced machine learning techniques to unravel the complex relationship between emotional cues in customer evaluations, normative ratings, and subsequent reader engagement within the food delivery app context.
In developing countries, urban mobility is a significant challenge due to convergence of population growth and the economic attraction of urban centers. This convergence of factors has resulted in an increase in the demand for transport services, affecting existing infrastructure and requiring the development of sustainable mobility solutions. In order to tackle this challenge, it is necessary to create optimal services that promote sustainable urban mobility. The main objective of this research is to develop and validate a comprehensive methodology framework for assessing and selecting the most sustainable and environmentally responsible urban mobility services for decision makers in developing countries. By integrating fuzzy multi-criteria decision-making techniques, the study aims to address the inherent complexity and uncertainty of urban mobility planning and provide a robust tool for optimizing transportation solutions for rapid urbanization. The proposed methodology combines three-dimensional fuzzy methods of type-1, including AHP, TOPSIS and PROMETHEE, using the Borda method to adapt subjectivity, uncertainty, and incomplete judgments. The results show the advantages of using integrated methods in the sustainable selection of urban mobility systems. A sensitivity analysis is also performed to validate the robustness of the model and to provide insights into the reliability and stability of the evaluation model. This study contributes to inform decision-making, improves policies and urban mobility infrastructure, promotes sustainable decisions, and meets the specific needs of developing countries.
Soil erosion is characterized by the wearing away or loss of the uppermost layer of soil, driven by water, wind, and human activities. This process constitutes a significant environmental issue, with adverse effects on water quality, soil health, and the overall stability of ecosystems across the globe. This study focuses on the Anuppur district of Madhya Pradesh, India, employing the Revised Universal Soil Loss Equation (RUSLE) integrated with Geographic Information System (GIS) tools to estimate and spatially analyze soil erosion and fertility risk. The various factors of the model, like rainfall erosivity (R), soil erodibility (K), slope length and steepness (LS), conservation practices (P), and cover management factor (C), have been computed to measure annual soil loss in the district. Each factor was derived using geospatial datasets, including rainfall records, soil characteristics, a Digital Elevation Model (DEM), land use/land cover (LULC) data, and information on conservation practices. GIS methods are used to map the geographical variation of soil erosion, providing important information on the area’s most susceptible to erosion. The outcome of the study reveals that 3371.23 km2, which constitutes 91% of the district’s total area, is identified as having mild soil erosion; in contrast, 154 km2, or 4%, is classified as moderate soil erosion, while 92 km2, representing 2.5%, falls under the high soil erosion category. Ad
Copyright © by EnPress Publisher. All rights reserved.