The telecommunications services market faces essential challenges in an increasingly flexible and customer-adaptable environment. Research has highlighted that the monopolization of the spectrum by one operator reduces competition and negatively impacts users and the general dynamics of the sector. This article aims to present a proposal to predict the number of users, the level of traffic, and the operators’ income in the telecommunications market using artificial intelligence. Deep Learning (DL) is implemented through a Long-Short Term Memory (LSTM) as a prediction technique. The database used corresponds to the users, revenues, and traffic of 15 network operators obtained from the Communications Regulation Commission of the Republic of Colombia. The ability of LSTMs to handle temporal sequences, long-term dependencies, adaptability to changes, and complex data management makes them an excellent strategy for predicting and forecasting the telecom market. Various works involve LSTM and telecommunications. However, many questions remain in prediction. Various strategies can be proposed, and continued research should focus on providing cognitive engines to address further challenges. MATLAB is used for the design and subsequent implementation. The low Root Mean Squared Error (RMSE) values and the acceptable levels of Mean Absolute Percentage Error (MAPE), especially in an environment characterized by high variability in the number of users, support the conclusion that the implemented model exhibits excellent performance in terms of precision in the prediction process in both open-loop and closed-loop.
Ebola virus is a potent infectious disease virus that can cause Ebola haemorrhagic fever caused by human and primate. It has high mortality and easy infectivity to form a great obstacle to the steady development of human society. The profound understanding of the virus is particularly important harm. In this paper, a number of mathematical models are established to solve this problem. The software is used to analyze and predict the propagation of Ebola virus. The residual analysis is used to test the model. Finally, the effects of various control measures on controlling the epidemic are analyzed. In order to solve the problem, we will establish the infectious disease model to dynamically describe the spread of the virus in the 'virtual orangutan population'. Considering that the latent population is analyzed in this question, we will improve the model. Join the latent group (), and the migrants are divided into self-healing () and the dead (), to establish a suitable solution to this problem model. According to the relevant data given in the title, differential equations were established. For the second question, this question involves the one-way transmission of the virus across the species, so we can improve the model, on the basis of human contact with orangutans infected groups, the establishment of a one-way model to solve this problem. On the basis of the problem one, the differential equation is established, the model is predicted and tested. In the case of question 3, the number of human susceptible groups is much higher than that of the orangutan infection group by comparing the relevant data with the increase of the cure rate to 80% after the intervention of the outside experts. Therefore, the original data of human populations from experts can be ignored. Since then the virus spreads within a single species, the differential equation can be established according to the model in question 1 and the data values in the virtual human population are predicted. For question 4, the effect of the measures such as the strict enforcement of the various epidemic control measures and the improvement of the drug effect on the control of the epidemic are analyzed by comparing the above-mentioned models with the control measures.
Recognizing the importance of competition analysis in telecommunications markets is essential to improve conditions for users and companies. Several indices in the literature assess competition in these markets, mainly through company concentration. Artificial Intelligence (AI) emerges as an effective solution to process large volumes of data and manually detect patterns that are difficult to identify. This article presents an AI model based on the LINDA indicator to predict whether oligopolies exist. The objective is to offer a valuable tool for analysts and professionals in the sector. The model uses the traffic produced, the reported revenues, and the number of users as input variables. As output parameters of the model, the LINDA index is obtained according to the information reported by the operators, the prediction using Long-Short Term Memory (LSTM) for the input variables, and finally, the prediction of the LINDA index according to the prediction obtained by the LSTM model. The obtained Mean Absolute Percentage Error (MAPE) levels indicate that the proposed strategy can be an effective tool for forecasting the dynamic fluctuations of the communications market.
The goal of this work was to create and assess machine-learning models for estimating the risk of budget overruns in developed projects. Finding the best model for risk forecasting required evaluating the performance of several models. Using a dataset of 177 projects took into account variables like environmental risks employee skill level safety incidents and project complexity. In our experiments, we analyzed the application of different machine learning models to analyze the risk for the management decision policies of developed organizations. The performance of the chosen model Neural Network (MLP) was improved after applying the tuning process which increased the Test R2 from −0.37686 before tuning to 0.195637 after tuning. The Support Vector Machine (SVM), Ridge Regression, Lasso Regression, and Random Forest (Tuned) models did not improve, as seen when Test R2 is compared to the experiments. No changes in Test R2’s were observed on GBM and XGBoost, which retained same Test R2 across different tuning attempts. Stacking Regressor was used only during the hyperparameter tuning phase and brought a Test R2 of 0. 022219.Decision Tree was again the worst model among all throughout the experiments, with no signs of improvement in its Test R2; it was −1.4669 for Decision Tree in all experiments arranged on the basis of Gender. These results indicate that although, models such as the Neural Network (MLP) sees improvements due to hyperparameter tuning, there are minimal improvements for most models. This works does highlight some of the weaknesses in specific types of models, as well as identifies areas where additional work can be expected to deliver incremental benefits to the structured applied process of risk assessment in organizational policies.
Copyright © by EnPress Publisher. All rights reserved.