The endogenous, human, and social factors influencing the economic development of the municipalities of San Juan Cotzocón and San Pedro y San Pablo Ayutla in the Istmo de Tehuantepec region of the state of Oaxaca are analyzed. The hypothesis posits that the dimensions of endogenous development, social capital, and human capital directly impact the economic development of the respective municipalities. The study involved administering 262 questionnaires to the residents of these municipalities during the month of May 2023. The collected data were examined using exploratory factor analysis to determine the underlying structure and structural equation modeling to estimate the effects and relationships between variables. Results indicate that endogenous development, social capital, and human capital are factors in the economic development of the studied communities, with endogenous development being the most influential factor due to its statistical significance. Notably, the existence of tourist and cultural attractions in the municipalities emerges as a catalyst for local economic development in response to the establishment and operation of the Isthmus of Tehuantepec Interoceanic Corridor.
In rural areas, land use activities around primary arterial roads influence the road section’s traffic characteristics. Regulations dictate the design of primary arterial roads to accommodate high speeds. Hence, there is a mix of traffic between high-speed vehicles and vulnerable road users (pedestrians, bicycles, and motorcycles) around the land. As a result, researchers have identified several arterial roads in Indonesia as accident-prone areas. Therefore, to improve the road user’s safety on primary arterial roads, it is necessary to develop models of the influence of various factors on road traffic accidents. This research uses binary logistic regression analysis. The independent variables are carelessness, disorderliness, high speed, horizontal alignment, road width, clear zone, road shoulder width, signs, markings, and land use. Meanwhile, the dependent variable is the frequency of accidents, where the frequency of accidents consists of multi-accident vehicles (MAV) and single-accident vehicles (SAV). This study collects data for a traffic accident prediction model based on collision frequency in accident-prone areas. The results, road shoulder width, and road sign factor all have an impact on the frequency of traffic accidents. According to a realistic risk analysis, MAV and SAV have no risk difference. After validation, this model shows a confidence level of 92%. This demonstrates that the model generates estimations that accurately reflect reality and are applicable to a wider population. This research has the potential to assist engineers in improving road safety on primary arterial roads. In addition, the model can help the government measure the impact of implemented policies and engage the public in traffic accident prevention efforts.
This research aimed to 1) evaluate the demographic characteristics, economic, social, and environmental conditions, and characteristics of the senior people in Ranong province, 2) discover the most relevant work characteristic factors for the older persons, and 3) propose appropriate work characteristics model for older people to improve quality of life. This mixed-methods research, for the quantitative part, utilizes the techniques of MRA & CFA with a sample size of 378 individuals, and for the qualitative part, utilizes a documentary study, in-depth interviews with 19 key informants, and a focus group of 17 individuals. The quantitative data were analyzed using a statistical package for the social sciences (SPSS), and content and categorization analysis with a triangulation verification were used for qualitative data. The results showed that: 1) Ranong province is blessed with rich resources, having minerals that can generate income for the province, life-long learning is given priority in senior school to enhance knowledge and necessary life skills, 2) from the regression analysis, the six predicted work characteristic factors; physical, emotional, autonomous, resistant, low-technology and safety were found relevant with statistically significant at 0.05, and the CFA consistency indices also withstood with the six dimensions above, 3) the appropriate work characteristics is articulated in the form of PEARLS model where physical, emotional, autonomous, resistant, low-technology and safety dimensions are the key.
The Primary and secondary shadow education refers to a kind of unofficial education that exists outside the traditional mainstream primary and secondary education system in China, with both commercial and educational attributes. As the primary and secondary school stage is an important key stage for further education, existing research mainly focuses on the spatial distribution of primary and secondary school basic education facilities and non-subject training, with fewer studies targeting primary and secondary school subject tutoring shadow education. With the changes in China’s education industry and the introduction of the Double Reduction Policy, there is an urgent need to conduct in-depth research on the spatial aggregation characteristics and influencing factors of Shadow Education Enterprises for primary and secondary school students. This paper takes the main urban area of Zhengzhou City as the study area, and takes primary and secondary school Shadow Education Enterprises as the research object, and applies spatial analysis methods such as kernel density, nearest-neighbor index, and geographic detector to quantitatively analyze the spatial distribution characteristics of primary and secondary school shadow education tutoring enterprises in Zhengzhou City and the factors affecting them The results show that: 1) The overall spatial pattern of primary and secondary school tutoring Shadow Education Enterprises in the main urban area of Zhengzhou City has largely formed a core-edge structural feature that spreads from the urban center to the periphery, and presents the spatial agglomeration feature of “double nuclei many times” distributed along both sides of the Beijing-Guangzhou Line. 2) The distribution of mentoring Shadow Education Enterprises in the main urban area of Zhengzhou City in relation to provincial model primary and secondary schools is significant and there is a significant difference between the distribution around secondary schools and primary schools. 3) The spatial distribution of Shadow Education Enterprises in the main urban area of Zhengzhou City is mainly influenced by factors such as the size of the school-age population, the level of commercial development, the location of school buildings and the accessibility of transport.
The female labor force participation holds significant implications for various aspects of society, the economy, and individual lives. Understanding its significance involves recognizing the multifaceted impact of women’s participation in the workforce. In this context, the current study investigates the factors influencing the female labor force participation rate in Saudi Arabia while using a set of independent variables such as GDP growth, employment-to-population ratio, inflation, urban population growth, tertiary school enrollment, labor force with advanced education, fertility rate, and age dependency ratio, covering a period from 2000 to 2022. The results reveal that the employment-to-population ratio, inflation rate, urbanization, and age dependency ratio have positive and statistically significant impacts on the female labor force participation rate. This research offers valuable insights for formulating policies to foster female empowerment and overcome the obstacles that hinder their economic participation.
Copyright © by EnPress Publisher. All rights reserved.