The development of China's education industry is closely linked to the progress of the country's society. With rapid economic development and continuous improvement of the political system, education has received attention from all sectors of society. Education has existed since the emergence of human society and has always been closely intertwined with human development. Humans are the primary subject of education. For educators engaged in the field of education, educational psychology is a well-known discipline and an important theoretical foundation for conducting educational activities and teaching in the future. The physical and mental development of contemporary children and adolescents has undergone significant changes compared to the past. For schools, it is of great significance for educators to effectively apply the relevant knowledge of educational psychology in communication and teaching with students to enhance teaching effectiveness and promote individual physical and mental development. This article discusses and studies how to apply educational psychology in teaching activities.
Yu Dafu's The Sinking of the Nation tells the story of a young man whose sexual desire is unsatisfied, and the process of sinking until his death, which aptly expresses the uncertainty and helplessness of the youth of the May Fourth Movement, and highlights the individual's subjective consciousness. The article analyzes and explains from the background of the creation era, the creator and the text to show that the unsatisfied sexual desire is the key to lead the protagonist "he" to sink step by step, and then explains that the expression of the individual consciousness in "Sinking" is higher than the will of the state, and tries to restore the author's original intention to make a pluralistic supplement to the interpretation of "Sinking".
The H3N2 influenza virus is spiking dramatically, which is a major concern worldwide and in India. The multifunctional hetero-trimer influenza virus RNA-dependent RNA polymerase (RdRP) is involved in the generation of viral mRNA and is crucial for viral infectivity, which is directly related to the virus’s ability to survive. The goal of the current work was to use molecular docking to determine how the RdRP protein might be affected by powerful bioactive chemicals found in Calotropis gigantia latex. By applying CB-dock 2 analysis and 2D interactions, an in-silico docking study was conducted using a GC-FID (gas chromatography with flame-ionization detection) based composition profile. Tocospiro A (15%), Amyrin (7%), and Gombasterol A were found by GC-FID to be the main phytocompounds in the latex of Calotropis gigantia. The docking result showed that ligands were effectively bound to RdRP. According to interaction studies, RdRP/ligand complexes create hydrogen bonds, van der Waals forces, pi-alkyl bonds, alkyl bonds, and pi-Sigma bonds. Therefore, it was suggested that Calotropis gigantia latex may represent a possible herbal remedy to attenuate H3N2 infections based on the above findings of the fragrance profile and docking.
Disease epidemics may spread quickly and easily throughout nations and continents in our current global environment, having a devastating effect on public health and the world economy. There are over 513 million people worldwide who have been infected, and more than 6.2 million have died due to SARS-CoV-2. There are treatments but no cures for most viruses. Nevertheless, the spread of viruses can be limited by introducing antiviral coatings on public area surfaces and personal protective equipment (e.g., face masks). This work aims to fabricate a polymer-based coating with acrylic resin as a binder that possesses great antiviral activity against the Feline coronavirus (FCov). The chosen polymer, polyethylene glycol (PEG), is used as an antiviral agent because it contains “green” chemistry benefits such as non-toxicity, being inexpensive, readily recyclable, safe, natural, non-flammable, biocompatible, and biodegradable. The PEG/acrylic coating systems of different weight percentages were coated on the glass substrates by the spray-coating method and cured at room temperature for 24 hours. The developed PEG/acrylic coating system that contains 20 wt% of PEG exhibits the highest anti-viral activities (99.9% against FCov) compared to the other weight percentages. From this study, it has been observed that the hydrophilicity of the coating plays an important role in its antiviral activity. The developed coating has a hydrophilic property, in which the contact angle was measured at 83.28 ± 0.5°. The FTIR reveals that there are no existing toxic components or new components contained in the coating samples.
The aim of the present study was to determine the effects of single and mixed infections of nematode (Meloidogyne javanica), fungus (Fusarium oxysporum) and bacterium (Xanthomonas axonopodis) on nodulation and pathological parameters of Bambara groundnut (Vigna subterrenea (L.) Verdc.) in field condition. Nematode infested field was used while other pathogens were obtained from diseased plants. The Randomized Complete Block Design (RCBD) was adopted in a 5 × 9 × 5 factorial design (5 blocks, 9 treatments and 5 replicates per treatments) resulting in 225 experimental units. In each experimental unit, three seeds were sown to a depth of 5cm and thinned to one plant per planting hole after germination at day 7. Treatments were inoculated into test plant following standard methods. As a result, the control treatment recorded the highest number of nodules (64.0 ± 6.91), followed by bacterium (45.2 ± 5.11) while N + F + B had the lowest number of root nodules (23.4 ± 2.42). Simultaneous treatment (N + F + B) gave the highest percentage reduction in nodulation (63.44%), followed by treatment N + F7 (56.25%). Fungus treatment recorded the highest mean wilted plants (3.8 + 0.20) followed by N + F7 treatment (3.40 + 0.40). Gall formation in the nematode treatment increased proportionately by 56.33% as the highest recorded, followed by treatment N + F7 with 50.0%. Treatment N + F7 had the highest reproduction factor (Rf) value of 9.30 followed by nematode (8.30), N + B7 (7.40), N + F + B (6.80) and N + F14 (6.50). Zero (0) Rf value was recorded in fungus, bacterium and control treatments. The observed differences in nodulation and pathological parameters among the treatments are significant (P < 0.05). The data provided in this work is important in the control of the three pathogens affecting the productivity of Bambara nut. Formulation of a single protectant should be designed to have potent effects on the three pathogens to achieve effective protection and good production of Bambara nut.
"Physics Curriculum Standards for Compulsory Education (2011 Edition)" requires that physics teaching in junior high schools should focus on the development of students' scientific abilities, including the development of scientific knowledge and skills, scientific methods and attitudes. In view of the problems existing in middle school physics teaching such as being out of touch with real life, lack of interest, and traditional indoctrination teaching, integrating STEAM education concepts into physics experiment courses can greatly improve the interest of physics teaching and put students first. , teachers as instructors and assistants to improve the existing problems in the current physics teaching. Therefore, how to reasonably apply the STEAM education concept to the physical experiment course is a question worth exploring. I take "the design and production of floating sinks" as an example. The general idea is to build the main line of classroom teaching: the smoothness of knowledge logic, the progress of students' cognitive laws, the smooth design of teaching activities, and how to learn buoyancy and explore objects. To better understand the floating and sinking of objects when floating and sinking, interspersed with the educational concept of STEAM.
Copyright © by EnPress Publisher. All rights reserved.