Analyzing ecosystem service values (ESV) is crucial for achieving sustainable development. The main objective of this study was to assess the ecosystem services of the Cisadane watershed in Indonesia, with specific goals: (i) examining the spatiotemporal dynamics of ESV using multi-year land use and land cover (LULC) data from 2000 to 2021, (ii) exploring trade-offs and synergies among various ecosystem services, and (iii) investigating the sensitivity of ESV to changes in LULC. The results unveiled a significant decrease in forested areas (21.2%) and rice fields (10.2%), leading to a decline in ESV of $196.37 billion (33.17%) from 2010 to 2021. Throughout the period from 2000 to 2021, interactions between ESV were mainly synergistic. Projected from the baseline year (2021), the decline in ESV is expected to persist, ranging from $24.78 billion to $124.28 million by 2030 and from $45.78 billion to $124.28 million by 2050. The total estimated ecosystem values exhibited an inelastic response in terms of ecosystem value coefficients. The study also emphasizes an inelastic response in total estimated ESV coefficient concerning ecosystem value coefficients. These findings underscore the urgent need for targeted conservation efforts and sustainable land management practices to mitigate the further decline in ecosystem services and safeguard the long-term well-being of the Cisadane watershed and its inhabitants.
Naturally occurring radionuclides can be categorized into two main groups: primordial and cosmogenic, based on their origin. Primordial radionuclides stem from the Earth’s crust, occurring either individually or as part of decay chains. Conversely, cosmogenic radionuclides originate from extraterrestrial sources such as space, the sun, and nuclear reactions involving cosmic radiation and the Earth’s atmosphere. Gamma-ray spectrometry is a widely employed method in Earth sciences for detecting naturally occurring radioactive materials (NORM). Its applications vary from environmental radiation monitoring to mining exploration, with a predominant focus on quantifying the content of uranium (U), thorium (Th), and potassium (K) in rocks and soils. These elements also serve as tracers in non-radioactive processes linked to NORM paragenesis. Furthermore, the heat generated by radioactive decay within rocks plays a pivotal role in deciphering the Earth’s thermal history and interpreting data concerning continental heat flux in geophysical investigations. This paper provides a concise overview of current analytical and measuring techniques, with an emphasis on state-of-the-art mass spectrometric procedures and decay measurements. Earth scientists constantly seek information on the chemical composition of rocks, sediments, minerals, and fluids to comprehend the vast array of geological and geochemical processes. The historical precedence of geochemists in pioneering novel analytical techniques, often preceding their commercial availability, underscores the significance of such advancements. Geochemical analysis has long relied on atomic spectrometric techniques, such as X-ray fluorescence spectrometry (XRFS), renowned for its precision in analyzing solid materials, particularly major and trace elements in geological samples. XRFS proves invaluable in determining the major constituents of silicate and other rock types. This review elucidates the historical development and methodology of these techniques while showcasing their common applications in various geoscience research endeavors. Ultimately, this review aims to furnish readers with a comprehensive understanding of the fundamental concepts and potential applications of XRF, HPGes, and related technologies in geosciences. Lastly, future research directions and challenges confronting these technologies are briefly discussed.
An appraisal of the groundwater potential of Alex Ekwueme Federal University Ndufu Alike was carried out by integrating datasets from geology, geographic information system and electrical resistivity survey of the area. The study area is underlain by the Asu River group of Albian age. The Asu River Group in the Southern Benue Trough comprises of Shales, Limestones and Sandstone lenses of the Abakaliki Formation in Abakaliki and Ikwo areas. The shales are generally weathered, fissile, thinly laminated and highly fractured and varies between greyish brown to pinkish red in colour. Twenty (20) Vertical Electrical Sounding data were acquired using SAS 1000 ABEM Terrameter and processed to obtain layer parameters for the study area. A maximum current electrode spacing (AB) of 300 meters was used for data acquisition. Computer aided iterative modelling using IPI2 Win was used to determine layer parameters. In-situ Hydraulic Conductivity measurements at seven parametric locations within the study area were conducted and integrated with Electrical Resistivity measurements to determine aquifer parameters (e.g., Hydraulic conductivity and Transmissivity) in real time. This technique reduces the attendant huge costs associated with pumping tests and timelines required to carry out the technique. Accurate delineation of aquifer parameters and geometries will aid water resource planners and developers on favourable areas to site boreholes in the area. Several correlative cross-sections were generated from the interpreted results and used to assess the groundwater potential of the study area. Results show that the resistivity of the the aquifer ranges from 7.3 Wm–530 Wm while depth to water ranges from 11.4 m to 55.3 m. Aquifer thicknesses range from 8.7 m at VES 5 to 36.3 m at VES 6 locations. Hydraulic conductivity ranges from 1.55 m/day at VES 15.18, and 19 locations to 9.8 m/day at VES 3 and 4 locations respectively. Transmissivity varies from 17.48 m2/day at VES 19 to 98 m2/day at VES 3 locations respectively. Areas with relatively high transmissivities coupled with good aquifer thicknesses should be the target of water resource planners and developers when proposing sites for drilling productive boreholes within Alex Ekwueme federal University Ndufu Alike.
This study evaluates the aquafeed self-sufficiency sector in Indonesia, aiming to provide policy recommendations for optimizing freshwater aquaculture production. The study engaged 1005 participants, including 204 self-sufficient aquafeed producers and 801 fish farmers, covering 88% of the regions where the Ministry of Marine Affairs and Fisheries promotes aquafeed self-sufficiency, conducted in 30 Indonesian provinces. The majority of on-farm and small-scale feed manufacturers continue to operate successfully (91%), with a minor portion discontinuing (9%). Aquafeed products incorporating local ingredients prove cost-effective and receive high acceptance among fish farmers. The sustainability of the aquafeed self-sufficiency sector is closely linked to local ingredient availability, operational aquafeed manufacturing plants, product quality, human resource capabilities, and government policies. The study presents policy recommendations to address these issues, encompassing measures such as ensuring ingredient supply sustainability, providing a mobile laboratory for ingredient and feed analysis, enhancing human resource quality through training, facilitating easier access to financial support, and strengthening central-local government coordination to optimize the aquafeed self-sufficiency program. The rise of the national fish production target from freshwater aquaculture has attracted great attention in the improvement of the aquafeed sector since the sustainability of aquafeed supply is the main driver for the success of aquaculture production.
We report a method for effectively and homogeneously incorporating carbon nanotubes (CNTs) in the form of double-wall (DWCNTs) and multi-wall (MWCNTs) structures into commercial paints without the use of additives, surfactants, or chemical processes. The process involves the physical mixing of the nanotubes and polymers using the cavitation energy of an ultrasonic bath. It is a simple, fast method that allows for uniform distribution of carbon nanotube bundles within the polymer for direct application. Due to the hydrophobic properties of the carbon nanotubes as grown, we used paint samples containing 0.3% by mass of both types of CNTs and observed an improvement in waterproofing through wettability and water absorption through immersion tests on the samples. Different solvents such as water, formaldehyde, and glycerin were used, and the results showed an increase in paint impermeability of 30% and 25% with the introduction of DWCNTs and MWCNTs, respectively. This indicates a promising, economically viable, and revolutionary method for applying nanotechnology in the polymer industry.
This review summarizes some of the recent advances related to shallow penetration conformance sealants (SPCS) based on cross-linked polymer nanocomposite gels. The cross-linked polymer nanocomposite gels formed a three-dimensional (3D) gel structure upon contact with either water or oil when placed at the downhole. Therefore, the cross-linked polymer nanocomposite gels offer a total or partial water shutoff. Numerous polymeric gels and their nanocomposites prepared using various techniques have been explored to address the conformance problems. Nevertheless, their instability at high temperature, high pressure, and high salinity down-hole conditions (HT-HP-HS) often makes the treatments unsuccessful. Incorporating inert particles into the cross-linked polymer nanocomposite gel matrices improves stability under harsh down-hole conditions. This review discusses potential polymeric nanocomposite gels and their successful application in conformance control.
Copyright © by EnPress Publisher. All rights reserved.