Low temperature is one of the most significant environmental factors that threaten the survival of subtropical and tropical plant species. By conducting a study, which was arranged in a completely randomized design with three replicates, the relative freezing tolerance (FT) of four Iranian pomegranate cultivars, including ‘Alak Torsh’, ‘Tabestaneh Torsh’, ‘Poost Sefid’, and ‘Poost Syah’, as well as its correlation with some biochemical indices, were investigated. From each cultivar, pieces of one-year-old shoot samples were treated with controlled freezing temperatures (−11, −14, and −17 ℃) to determine lethal temperatures (LT50) based on survival percentage, electrolyte leakage, phenolic leakage, and tetrazolium staining test (TST) methods. Results showed that FT was higher in the second year with a lower minimum temperature and a higher concentration of cryoprotectants. The stronger correlation of electrolyte leakage with survival percentage (r = 0.93***) compared to the other three indices explained that this index could be the most reliable injury index in determining the pomegranate FT to investigate freezing effects. Of all four cultivars, ‘Poost Syah’ was the hardest by presenting a higher FT than ~ −14 ℃ in mid-winter. Accordingly, this pomegranate cultivar seems to be promising to grow in regions with a higher risk of freezing and to be involved in breeding programs to develop novel commercial cultivars.
This research explores the implementation of streamlined licensing frameworks and consolidated procedures for promoting renewable energy generation worldwide. An in-depth analysis of the challenges faced by renewable energy developers and the corresponding solutions was identified through a series of industry interviews. The study aims to shed light on the key barriers encountered during project development and implementation, as well as the strategies employed to overcome these obstacles. By conducting interviews with professionals from the renewable energy sector, the research uncovers a range of common challenges, including complex permitting processes, regulatory uncertainties, grid integration issues, and financial barriers. These challenges often lead to project delays, increased costs, and limited investment opportunities, thereby hindering the growth of renewable energy generation. However, the interviews also reveal various solutions and best practices employed by industry stakeholders to address these challenges effectively. These solutions encompass the implementation of streamlined licensing procedures, such as single licenses and one-stop services, to simplify and expedite the permitting process. Additionally, the development of clear and stable regulatory frameworks, collaboration between public and private entities, and improved grid infrastructure were identified as key strategies to overcome regulatory and grid integration challenges. The research findings highlight the importance of collaborative efforts between policymakers, industry players, and other relevant stakeholders to create an enabling environment for renewable energy development. By incorporating the identified solutions and best practices, policymakers can streamline regulatory processes, foster public-private partnerships, and enhance grid infrastructure, thus catalyzing the growth of renewable energy projects.
A failsafe network design recovering from the stressed condition against a massive supply disruption is generally useful for various applications. Water flow in plants under a tension is inherently vulnerable to an embolism, a water supply cut off, causing a death. However, the function of the network structures of leaf veins and xylem stems effectively reduces the embolism-induced failure. In this study, water transport in plants under the pressurized conditions compared to the normal physiological conditions is observed by X-ray imaing. By examining embolism-induced water supply limits in the architecturally diverse leaf and stem networks, a progressive hydraulic rule has been found: the limited flows in the selected parts of the network structures against a total fail. For a scientific explanation on nanoscale water flow dynamics occurring in plants, temporal meniscus development in the nanomembrane model system is investigated. The pressure-driven hydrodynamic transport phenomena can be explained to follow network dynamics of the modified imbibition typically occuring in nanostrutcures. This study contributes to a variety of design technologies of networked materials against the spread of flow damages under the stressed conditions.
In light of the metaverse’s vast expansion, it’s a crucial intellectual platform that’s transforming the video game industry and spurring creative innovation and technological advancement. Considering the distinctive niche that Taiwan occupies within the realm of the video game industry, this study uses a total of 11 video game companies in Taiwan as samples. The study spans a period of 16 years, from 2007 to 2022, and utilizes the random effect regression model for analysis. The study results illustrate that intellectual capital efficiency exerts varying contributions to the creation of value across different corporate value indicators within the video game industry. Among the factors, HCE, SCE, and CEE demonstrate the highest explanatory power for ROE, reaching up to 82.23%. Following this, they account for 73.57% of the variance in market share, but only a meager 13.67% for Tobin’s Q. This study is the empirical evidence that different methods of measuring intellectual capital and various definitions of value creation in an industry may lead to divergent results and managerial implications in intellectual capital research. Hence, it is worthwhile for subsequent studies to continue clarifying and delving deeper into these aspects.
The analysis of the accumulation and export of nutrients by the cowpea crop is fundamental for a more sustainable fertilization program, because the definition of the doses of organic fertilizers based only on the estimated maximum yield does not guarantee the maintenance of soil fertility. The objective of this study was to evaluate the effect of fertilization with chicken manure on the productivity, accumulation and exportation of nutrients by the pods of cowpea. A randomized block design was used, with five doses of chicken manure (0; 5; 10; 20 and 40 t ha-1) and four repetitions. The highest levels of P and Mg were found in the leaves with the application of 40 t ha-1 of manure. The maximum pod length was 14.47 cm, estimated with the dose of 33.33 t ha-1 of manure. The highest values of diameter, number of pods per plant and pod productivity were observed at the highest dose of manure applied. In relative terms, that is, total exported in relation to the total extracted by the aerial part, phosphorus is the nutrient most exported by the pods, on average 58%, followed by N (55%), K (43%), Mg (40%), S (38%) and Ca (17%). At the highest dose, although Ca accumulation occurred in large quantities (31.3 kg ha-1), only 13% of it was exported by the pods. Fertilizing cowpea with chicken manure supplied essential nutrients and increased pod yield from 7.2 (no fertilization) to 16.3 t ha-1 (fertilization with 40 t ha-1 of chicken manure). The plant remains of the cowpea constitute an important source of nutrients, being obtained at the highest dose of manure applied (40 t ha-1) the following amounts of macronutrients (kg ha-1): N (51.4); P (5.1); K (27.6); Ca (27.1); Mg (8.2); S (5.1), which may return to the soil, with the incorporation of the plants.
Alfalfa is considered the most used forage crop in the world, its main use is for cattle feeding, due to its high nutritional value, specifically in protein and digestible fiber. Currently, the trend in agriculture is to reduce the application of chemicals and among them are fertilizers that pollute soil and water, so the adoption of new technologies and other not so new is becoming a good habit among farmers. Nanotechnology in the plant system allows the development of new fertilizers to improve agricultural productivity and the release of mineral nutrients in nanoforms, which has a wide variety of benefits, including the timing and direct release of nutrients, as well as synchronizing or specifying the environmental response. Biofertilizers are important components of integrated nutrient management and play a key role in soil productivity and sustainability. While protecting the environment, they are a cost-effective, environmentally friendly and renewable source of plant nutrients to supplement chemical fertilizers in the sustainable agricultural system. Nanotechnology and biofertilization allow in a practical way the reduction in the application of chemicals, contributing to the sustainability of agriculture, so this work aims to review the relevant results on biofertilization, the use of nanotechnology and the evaluation of the nutritional composition of alfalfa when grown with the application of biofertilizers.
Copyright © by EnPress Publisher. All rights reserved.