Since the systematic approach of the processes and their interactions, the aim is to establish the configuration of a construction project for the housing of the Weenhayek indigenous people. Applied from the theoretical research of various authors on a group of methodologies, phases and tools for project management, through rational scientific methods, such as descriptive, analytical, comparative, analytical-synthetic, inductive-deductive, historical-logical, analogies, modeling, systemic-structural-functional, systematization; and empirical methods, such as interpretivism that involves inductive, qualitative, phenomenological and transversal research, and the interview technique; the way in which the implementation processes are organized, interacted and structured is established. This reveals an alternative for the detailed configuration of a construction project for Weenhayek houses, based on phases, activities, actions and work tasks with characteristics in accordance with the needs of the project.
One of the most frequently debated subjects in international forums is economic growth, which is regarded as a global priority. Consequently, researchers have turned their attention from conventional economic growth at a single average coefficient to divisible economic growth at levels of its value. Although the existing literature has discussed several determinants of economic growth, our article contributes to examining the sources of economic growth in African countries during the generations of reforms from 1990 to 2019 and in the context of economic vulnerability. The variables used in the analysis are gross domestic product, trade openness, financial development, and economic vulnerability. The study uses a quantile regression econometric model to examine these variables at different stages of reform. Quantile regression (QR) estimates for quantiles 0.05 to 0.95 showed mixed results: financial development is favorable to African economic growth at all quantile levels. However, economic vulnerability is a major impediment to economic growth at all quantile levels. In addition, it was found that a high degree of trade openness has a detrimental effect on African economic growth from quantile 0.5 of the dependent variable. Finally, another important result proves that financial development is a remedy for decision-makers against economic vulnerability.
The transportation sector in India, which is a vital engine for economic growth, is progressively facing challenges related to climate change. Increased temperature, extreme weather conditions, and rising seas threaten physical infrastructure, service delivery, and the economy. This research examines efforts towards improving the climate resilience of India’s transport sector through policy interventions. Strategies encompass broadening the focus to cover the integration of sustainability, innovative technology deployment, and adaptive infrastructure planning. Multi-sectoral measures are proposed to guarantee longevity, equity and environmental protection. National transport infrastructure will be secured, people will be enabled to move sustainably, and India will take its position in the world economy as a climate-resilient country. Long-term resource management and promoting inclusive governance are critical to agri-transportation systems that can withstand the changing climate.
This research aims to develop a Synergy Learning Model in the context of science learning. This research was conducted at Islamic Junior High School, Madrasah Tsanawiyah Negeri 2 Medan, involving 64 students of Grade 7 as the research subject. The method used in this research refers to the development research approach (R&D). In collecting the data, the research employed test and non-test techniques. The results prove that the Synergy learning model developed is effective in improving student learning outcomes. This is evident through the t-test statistical test where the t-count of 4.26 is higher than the t-table of 1.99. In addition, the level of practicality with a score of 3.39 is categorized as practical. This learning model emphasizes the learning process that supports the development of science skills and develops students' competencies in planning, collaborating, and critically reflecting. The findings of this study contribute to pedagogical practices and literature in the field of science learning.
The goal of this work was to create and assess machine-learning models for estimating the risk of budget overruns in developed projects. Finding the best model for risk forecasting required evaluating the performance of several models. Using a dataset of 177 projects took into account variables like environmental risks employee skill level safety incidents and project complexity. In our experiments, we analyzed the application of different machine learning models to analyze the risk for the management decision policies of developed organizations. The performance of the chosen model Neural Network (MLP) was improved after applying the tuning process which increased the Test R2 from −0.37686 before tuning to 0.195637 after tuning. The Support Vector Machine (SVM), Ridge Regression, Lasso Regression, and Random Forest (Tuned) models did not improve, as seen when Test R2 is compared to the experiments. No changes in Test R2’s were observed on GBM and XGBoost, which retained same Test R2 across different tuning attempts. Stacking Regressor was used only during the hyperparameter tuning phase and brought a Test R2 of 0. 022219.Decision Tree was again the worst model among all throughout the experiments, with no signs of improvement in its Test R2; it was −1.4669 for Decision Tree in all experiments arranged on the basis of Gender. These results indicate that although, models such as the Neural Network (MLP) sees improvements due to hyperparameter tuning, there are minimal improvements for most models. This works does highlight some of the weaknesses in specific types of models, as well as identifies areas where additional work can be expected to deliver incremental benefits to the structured applied process of risk assessment in organizational policies.
While the notion of the smart city has grown in popularity, the backlash against smart urban infrastructure in the context of changing state-public relations has seldom been examined. This article draws on the case of Hong Kong’s smart lampposts to analyse the emergence of networked dissent against smart urban infrastructure during a period of unrest. Deriving insights from critical data studies, dissentworks theory, and relevant work on networked activism, the article illustrates how a smart urban infrastructure was turned into both a source and a target of popular dissent through digital mediation and politicisation. Drawing on an interpretive analysis of qualitative data collected from multiple digital platforms, the analysis explicates the citizen curation of socio-technic counter-imaginaries that constituted a consent of dissent in the digital realm, and the creation and diffusion of networked action repertoires in response to a changing political opportunity structure. In addition to explicating the words and deeds employed in this networked dissent, this article also discusses the technopolitical repercussions of this dissent for the city’s later attempts at data-based urban governance, which have unfolded at the intersections of urban techno-politics and local contentious politics. Moving beyond the common focus on neoliberal governmentality and its limits, this article reveals the underexplored pitfalls of smart urban infrastructure vis-à-vis the shifting socio-political landscape of Hong Kong, particularly in the digital age.
Copyright © by EnPress Publisher. All rights reserved.