Maps of forest stand condition—the current phase of the forest-forming process—will be useful for foresters in their forest management in addition to the forest planning and cartographic materials. The mapping methodology was applied in the test area of the Bolshemurtinsky forest district of the Krasnoyarsk region, which is typical for the southern taiga forests of East Siberia. Source data for mapping was obtained on the basis of descriptions of the forest subcompartments on the GIS attribute table of the forest district. Forest stand confinement to the terrain relief indicators was identified on the basis of the SRTM 55-01 digital terrain model data. Spatial analysis has been performed using the ArcGIS Spatial Analyst module. Mapping capability has been shown not only for the year of forest inventory but also for the earlier period of time. To determine the predominant species and the age of the 100-year-old forest stand, a scheme was proposed in which the conceivable options are typified depending on the succession trend, the forest stand age prior to disturbance, and the period of reforestation. Map fragments of the test area as of 2006—the year of forest inventory—and as of 1906—the year of the intensive colonization beginning in southern Siberia—are demonstrated. Maps of forest condition in the test area represent successions that are typical in the southern taiga forests of Siberia: post-harvest, pyrogenic, and biogenic. The methodology of forest condition mapping is universal.
This paper uses existing studies to explore how Artificial Intelligence (AI) advancements enhance recruitment, retention, and the effective management of a diverse workforce in South Africa. The extensive literature review revealed key themes used to contextualize the study. This study uses a meta-narrative approach to literature to review, critique and express what the literature says about the role of AI in talent recruitment, retention and diversity mapping within South Africa. An unobtrusive research technique, documentary analysis, is used to analyze literature. The findings reveal that South Africa’s Human Resource Management (HRM) landscape, marked by a combination of approaches, provides an opportunity to cultivate alternative methods attuned to contextual conditions in the global South. Consequently, adopting AI in recruiting, retaining, and managing a diverse workforce demands a critical examination of the colonial/apartheid past, integrating contemporary realities to explore the potential infusion of contextually relevant AI innovations in managing South Africa’s workforce.
This study conducts a systematic literature review to analyze the integration of artificial intelligence (AI) within business excellence frameworks. An analysis of the findings in the reviewed articles yielded five major themes: AI technologies and intelligent systems; impact of AI on business operations, strategies, and models; AI-driven decision-making in infrastructure and policy contexts; new forms of innovation and competitiveness; and the impact of AI on organizational performance and value creation in infrastructure projects. The findings provide a comprehensive understanding of how AI can be integrated into organizational excellence emerged frameworks to address challenges in infrastructure governance, and sustainable development. Key questions addressed include: how AI affects consumer behavior and marketing strategies. What AI’s capabilities for businesses, especially marketing and digital strategies? How can organizations address the drivers and barriers to help make better use of AI in these business operations? Should organizations even do anything with these insights? These questions and more will be tackled throughout this discussion. This paper attempts to derive a comprehensive conceptual framework from several fields of human resources, operational excellence, and digital transformation, that can help guide organizations and policymakers in embedding AI into infrastructure and development initiatives. This framework will help practitioners navigate the complexities of AI integration, ensuring profitability and sustainable growth in a highly competitive landscape. By bridging the gap between AI technologies and development-related policy initiatives, this research contributes to the advancement of infrastructure governance, public management, and sustainable development.
This work investigated the photocatalytic properties of polymorphic nanostructures based on silica (SiO2) and magnetite (Fe3O4) for the photodegradation of tartrazine yellow dye. In this sense, a fast, easy, and cheap synthesis route was proposed that used sugarcane bagasse biomass as a precursor material for silica. The Fourier transform infrared (FTIR) spectroscopy results showed a decrease in organic content due to the chemical treatment with NaOH solution. This was confirmed through the changes promoted in the bonds of chromophores belonging to lignin, cellulose, and hemicellulose. This treated biomass was calcined at 800 ℃, and FTIR and X-ray diffraction (XRD) also confirmed the biomass ash profile. The FTIR spectrum showed the formation of silica through stretching of the chemical bonds of the silicate group (Si-O-Si), which was confirmed by DXR with the predominance of peaks associated with the quartz phase. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) confirmed the morphological and chemical changes due to the chemical and thermal treatments applied to this biomass. Using the coprecipitation method, we synthesized Fe3O4 nanoparticles (Np) in the presence of SiO2, generating the material Fe3O4/SiO2-Np. The result was the formation of nanostructures with cubic, spherical, and octahedral geometries with a size of 200 nm. The SEM images showed that the few heterojunctions formed in the mixed material increased the photocatalytic efficiency of the photodegradation of tartrazine yellow dye by more than two times. The degradation percentage reached 45% in 120 min of reaction time. This mixed material can effectively decontaminate effluents composed of organic pollutants containing azo groups.
Copyright © by EnPress Publisher. All rights reserved.