This research implements sustainable environmental practices by repurposing post-industrial plastic waste as an alternative material for non-conventional construction systems. Focusing on the development of a recycled polymer matrix, the study produces panels suitable for masonry applications based on tensile and compressive stress performance. The project, conducted in Portoviejo and Medellín, comprises three phases combining bibliographic and experimental research. Low-density polyethylene (LDPE), high-density polyethylene (HDPE), and polypropylene (PP) were processed under controlled temperatures to form a composite matrix. This material demonstrates versatile applications upon cooling—including planks, blocks, caps, signage, and furniture (e.g., chairs). Key findings indicate optimal performance of the recycled thermoplastic polymer matrix at a 1:1:1 ratio of LDPE, HDPE, and PP, exhibiting 15% deformation. The proposed implementation features 50 × 10 × 7 cm panels designed with tongue-and-groove joints. When assembled into larger plates, these panels function effectively as masonry for housing construction, wall cladding, or lightweight fill material for slab relieving.
To investigate the effect of the location of vacuum insulation panels on the thermal insulation performance of marine reefer containers, a 20ft mechanical refrigeration reefer container was employed in this paper, and the physical and mathematical models of three kinds of envelopes composed of vacuum insulation panels (VIP) and polyurethane foam (PU) were numerically established. The heat transfer of three types of envelopes under unsteady conditions was simulated. In order to be able to analyze theoretically, the Rasch transform is used to analyze the thermal inertia magnitude by calculating the thermal transfer response frequency and the thermal transfer response coefficient for each model, and the results are compared with the simulation results. The results implied that the insulation performance of VIP external insulation is the best. The delay times of each model obtained from the simulation results are 0.81 h, 1.45 h, 2.03 h, and 2.24 h, while the attenuation ratios are 8.93, 20.39, 20.62, and 21.78, respectively; the delay times calculated from the theoretical analysis are 0.78 h, 1.43 h, 1.99 h, and 2.20 h, respectively; and the attenuation ratios are 8.84, 20.31, 20.55, and 21.72, respectively. The carbon reduction effect of VIP external insulation is also the best. The most considerable carbon reduction is 3.65894 kg less than the traditional PU structure within 24 h. The research has a guiding significance for the research and progress of the new generation of energy-saving reefer containers and the insulation design of the envelope of refrigerated transportation equipment.
The expanding adoption of artificial intelligence systems across high-impact sectors has catalyzed concerns regarding inherent biases and discrimination, leading to calls for greater transparency and accountability. Algorithm auditing has emerged as a pivotal method to assess fairness and mitigate risks in applied machine learning models. This systematic literature review comprehensively analyzes contemporary techniques for auditing the biases of black-box AI systems beyond traditional software testing approaches. An extensive search across technology, law, and social sciences publications identified 22 recent studies exemplifying innovations in quantitative benchmarking, model inspections, adversarial evaluations, and participatory engagements situated in applied contexts like clinical predictions, lending decisions, and employment screenings. A rigorous analytical lens spotlighted considerable limitations in current approaches, including predominant technical orientations divorced from lived realities, lack of transparent value deliberations, overwhelming reliance on one-shot assessments, scarce participation of affected communities, and limited corrective actions instituted in response to audits. At the same time, directions like subsidiarity analyses, human-cent
Quantum dot can be seen as an amazing nanotechnological discovery, including inorganic semiconducting nanodots as well as carbon nanodots, like graphene quantum dots. Unlike pristine graphene nanosheet having two dimensional nanostructure, graphene quantum dot is a zero dimensional nanoentity having superior aspect ratio, surface properties, edge effects, and quantum confinement characters. To enhance valuable physical properties and potential prospects of graphene quantum dots, various high-performance nanocomposite nanostructures have been developed using polymeric matrices. In this concern, noteworthy combinations of graphene quantum dots have been reported for a number of thermoplastic polymers, like polystyrene, polyurethane, poly(vinylidene fluoride), poly(methyl methacrylate), poly(vinyl alcohol), and so on. Due to nanostructural compatibility, dispersal, and interfacial aspects, thermoplastics/graphene quantum dot nanocomposites depicted unique microstructure and technically reliable electrical/thermal conductivity, mechanical/heat strength, and countless other physical properties. Precisely speaking, thermoplastic polymer/graphene quantum dot nanocomposites have been reported in the literature for momentous applications in electromagnetic interference shielding, memory devices, florescent diodes, solar cells photocatalysts for environmental remediation, florescent sensors, antibacterial, and bioimaging. To the point, this review article offers an all inclusive and valuable literature compilation of thermoplastic polymer/graphene quantum dot nanocomposites (including design, property, and applied aspects) for field scientists/researchers to carry out future investigations on further novel designs and valued property-performance attributes.
Maps of forest stand condition—the current phase of the forest-forming process—will be useful for foresters in their forest management in addition to the forest planning and cartographic materials. The mapping methodology was applied in the test area of the Bolshemurtinsky forest district of the Krasnoyarsk region, which is typical for the southern taiga forests of East Siberia. Source data for mapping was obtained on the basis of descriptions of the forest subcompartments on the GIS attribute table of the forest district. Forest stand confinement to the terrain relief indicators was identified on the basis of the SRTM 55-01 digital terrain model data. Spatial analysis has been performed using the ArcGIS Spatial Analyst module. Mapping capability has been shown not only for the year of forest inventory but also for the earlier period of time. To determine the predominant species and the age of the 100-year-old forest stand, a scheme was proposed in which the conceivable options are typified depending on the succession trend, the forest stand age prior to disturbance, and the period of reforestation. Map fragments of the test area as of 2006—the year of forest inventory—and as of 1906—the year of the intensive colonization beginning in southern Siberia—are demonstrated. Maps of forest condition in the test area represent successions that are typical in the southern taiga forests of Siberia: post-harvest, pyrogenic, and biogenic. The methodology of forest condition mapping is universal.
A large number of consumers in Malaysia are resistant towards new technology and prefer instead the tried and tested way of doing things. It is worth examining if local consumers are in fact ready to digitize and accept technology in their day-to-day dealings. A behavioral study was developed to gauge the digital maturity and tech preparedness of Malaysian consumers with regards to loyalty and how this will reflect an individual’s predisposition in his or her ability and eventual use of a new technology. This study latched on to the concept of tech preparedness. A conceptual framework was developed after reviewing existing scholarly literature. This was then tested through a survey using a convenience sample from 383 SME consumers in the country. This study also looked at the difference in tech preparedness among gender, age and level of education. During the Investigation regarding Industry 4.0, it was noticed that there are few studies dealing with this segment of companies in Malaysia. In addition in team of this research about customer perspective the amount of studies become more less and also because of the Shortage of the necessary skills, talents and knowledge for adopting Industry 4.0, the number Malaysian company ready to move or already move to industry 4.0 is quit few and it seems to cause less experience using new technology among Malaysian customers.
Copyright © by EnPress Publisher. All rights reserved.