This article aims to measure and identify the factors influencing the decision to use Chatbot in e-banking services for GenZ customers in Vietnam through 292 customers. Testing methods: Cronbach’s Alpha trust factor, EFA discovery factor analysis, and regression analysis have shown that 07 factors directly affect GenZ’s decision to use Chatbot. Those factors include (1) Customer attitude; (2) Useful perception; (3) Perception of ease of use; (4) Behavioral control perception; (5) Risk perception; (6) Subjective norms and (7) Trust. On that basis, the article has set out management implications for Vietnamese commercial banks to approach and increase the decision of customers aged 18–24 years in Vietnam.
In today’s rapidly evolving world, the integration of artificial intelligence (AI) technologies has become paramount, offering unparalleled value propositions and unparalleled consumer experiences. This study delves into the transformative impact of five AI activities on brand experience and consumer-based brand equity within the retail banking landscape of Lebanon. Employing a quantitative deductive approach and a sample of 211 respondents, the research employs structural equation modeling to analyze the data. The findings underscore the significant influence of four AI marketing activities on brand experience, revealing that factors such as information, accessibility, and customization play pivotal roles, while interaction has a less pronounced effect. Importantly, the study unveils that brand experience acts as a partial mediator between AI marketing activities and consumer-based brand equity. These revelations not only illuminate pathways for retail banks in Lebanon to refine their AI strategies but also underscore the importance of leveraging AI-driven marketing initiatives to bolster customer equity, acquisition, and retention efforts in an increasingly competitive market age.
The aviation industry is experiencing over and over again a technological revolution, nowadays with airports at the forefront of embracing smart technologies to enhance operational efficiency, security and passenger experience. This article comprehensively analyzes the benefits, challenges, and legal implications of adopting smart technologies in airport facilitation and security control. It examines the regulatory framework established by the International Civil Aviation Organization (ICAO) on an international level and by sovereign states on a national level. It explores using smart solutions such as automated systems, data and biometric verification, artificial intelligence (AI), and the Internet of Things (IoT) devices in airport operations. The authors’ purpose is to highlight the improvements in airport facilities and security measures brought about by these technologies, while addressing concerns over privacy, cost, technological limitations and human factors. By emphasizing the importance of a balanced approach and considering innovation alongside legal and operational imperatives, the article underscores the transformative potential of smart and integrated technologies in shaping the future of air travel.
Bibliometric analysis is a commonly used tool to assess scientific collaborations within the researchers, community, institution, regions and countries. The analysis of publication records can provide a wealth of information about scientific collaboration, including the number of publications, the impact of the publications, and the areas of research where collaborations are most common. By providing detailed information on the patterns and trends in scientific collaboration, these tools can help to inform policy decisions and promote the development of effective strategies to support and enhance scientific collaborations between countries. This study aimed to analyze and visualize the scientific collaboration between Japan and Russia, using bibliometric analysis of collaborative publications from the Web of Science (WoS) database. The analysis utilized the bibliometrix package within the R statistical program. The analysis covered a period of two decades, from 2000 to 2021. The results showed a slight decrease in co-authored publications, with an annual growth rate of −1.26%. The keywords and thematic trends analysis confirmed that physics is the most co-authored field between the two countries. The study also analyzed the collaboration network and research funding sources. Overall, the study provides valuable insights into the current state of scientific collaboration between Japan and Russia. The study also highlights the importance of research funding sources in promoting and sustaining scientific cooperation between countries. The analysis suggests that more efforts in government funding are needed to increase collaboration between the two countries in various fields.
A new method has been proposed to estimate top heat losses of vertical flat plate liquid/air collectors with double glazing. Empirical relations have been developed for the temperatures of glass covers, thus facilitating the calculation of individual heat transfer coefficients. The values of individual heat transfer coefficients therefore obtained can be used in the proposed analytical equation for the estimation of the top heat loss coefficient of the vertical collector with double glazing. The analytical equation has been developed for collector tilt angle of 60 to 90 degrees, plate temperature of 323 K to 423 K, absorber coating emittance of 0.1 to 0.95, air gap spacing of 20 mm to 50mm between the plate and inner glass cover, air gap spacing of 20 mm to 50mm between glass covers, wind heat transfer coefficient of 5 W/m2K to 30 W/m2K, and ambient temperature of 263K to 313K. The accuracy of the analytical equation has been validated for the said range of variables in comparison to numerical solutions, and the values of the top heat loss coefficient are found to be within 2.5 percent compared to numerical solutions.
The last decades have offered new challenges to researchers worldwide through the problems our planet is facing both in the environment protection field and the need to replace fossil fuels with new environmentally friendly alternatives. Bioenergy as a form of renewable energy is an acceptable option from all points of view and biofuels due to their biological origin have the ability to satisfy the new needs of humanity. By releasing some non-polluting combustion products into the atmosphere, biofuels have already been adopted as additives in traditional liquid fuels, being intended mainly for internal combustion engines of automobiles. The current work proposes an extension of biofuels application in combustion processes specific to industrial furnaces. This technical concern is not found in the literature, except for achievements of the research team involved in this work, which has performed previous investigations. A 51.5 kW-burner was designed to operate with glycerine originating from triglycerides of plants and animals, mixed with ethanol, an alcohol produced by the chemical industry recently used as an additive in gasoline for automobile engines. Industrial oxygen was chosen as the oxidizing agent necessary for the liquid mixture combustion, allowing to obtain much higher flame temperatures compared to the usual combustion processes using air. Mixing glycerine with ethanol in 8.8 ratio allowed growing flame stability, accentuated also by creating swirl currents in the flame through the speed regime of fluids at the exit from the burner body. Results were excellent both through the flame stability and low level of polluting emissions.
Copyright © by EnPress Publisher. All rights reserved.