Segregating the scavenging processes from the lubrication methodology is a very effective way of improving two-stroke cycle engine durability. The application of stepped or twin diameter pistons is one such method that has repeatedly shown significantly greater durability over comparable crankcase scavenged engines together with an ability to operate on neat fuel without any added oil. This research study presents the initial results observed from a gasoline/indolene fuelled stepped piston engine ultimately intended for Hybrid Electric Vehicle and/or Range Extender Electric Vehicle application using hydrogen fuelling. Hydrogen fuelling offers the potential to significantly reduce emissions, with near zero emission operation possible, and overcoming the serious issues of range anxiety in modern transport solutions. The low environmental impact is discussed along with results from 1-d Computational Fluid Dynamic modelling. The engine type is a low-cost solution countering the financial challenges of powertrain duplication evident with Hybrid Electric and Range Extender Electric Vehicles.
This article explores the development and legislative process of concession agreements within the framework of Public-Private Partnerships (PPPs) in the EU, tracing their origins to the United Kingdom in the early 1990s. Driven by national policies, the Ministry of Finance in China has promoted PPPs in infrastructure and public services. This study focuses on the basic principles, legal nature, and general rules of EU concession agreements, aiming to provide legal strategies for Chinese franchising agreement legislation by drawing on the EU’s legislative experiences.
Unmanned Aerial Vehicles (UAVs) have gained spotlighted attention in the recent past and has experienced exponential advancements. This research focuses on UAV-based data acquisition and processing to generate highly accurate outputs pertaining to orthomosaic imagery, elevation, surface and terrain models. The study addresses the challenges inherent in the generation and analysis of orthomosaic images, particularly the critical need for correction and enhancement to ensure precise application in fields like detailed mapping and continuous monitoring. To achieve superior image quality and precision, the study applies advanced image processing techniques encompassing Fuzzy Logic and edge-detection techniques. The study emphasizes on the necessity of an approach for countering the loss of information while mapping the UAV deliverables. By offering insights into both the challenges and solutions related to orthomosaic image processing, this research lays the groundwork for future applications that promise to further increase the efficiency and effectiveness of UAV-based methods in geomatics, as well as in broader fields such as engineering and environmental management.
One of the most important ways to achieve the goals stipulated by the Paris (2015) Agree-ment on climate change is to solve a two-fold task: 1) the adsorption of CO2 by the forest communities fcom the atmosphere during global warming and 2) their adaptation to these climate changes, which should ensure the effectiveness of adsorption itself. Report presents the regional experience of the numerical solution of this task. Calculations of the carbon balance of forests in the Oka-Volga River basin were carried out for global forecasts of moderate and extreme warming. The proposed index of labile elastic-plastic stability of forest ecosystems, which characterizes their succession-restorative po-tential, was used as an indicator of adaptation. A numerical experiment was conducted to assess the effect of the elastic-plastic stability of forest formations and the predicted climatic conditions on the carbon balance. In the upcoming 100-year forecast period, the overall stability of forest formations should increase, and to the greatest extent with extreme warming. Accordingly, one should expect a significant increase in the ability of boreal forests to ab-sorb greenhouse gases. It is determined unambiguous picture of a significant increase in the adsorption capacity of boreal forests with a rise in their regenerative potential.
In order to meet the guidance, publicity and commercial functions, various types of billboards have become important permanent facilities in the airport terminal, which are distributed all over the terminal. The advertising materials inside billboards have certain fire hazards, and there is a lack of research on the fire risk of advertising materials at present. Therefore, it is necessary to study the fire risk of advertising materials in airport terminal. Taking PVC board, a commonly used advertising material, as the research object, Pyrosim was used to model and analyze its fire, and the characteristics of fire spread, smoke flow, and distribution of combustion products such as CO and CO2 in the terminal building were obtained. This study explores the fire combustion characteristics of advertising materials in civil airport terminals, providing a basis for fire prevention management in civil airport terminals.
The use of porous media to simplify the thermohydraulic of a nuclear reactor is the topic of recent research. As a case study, the rector of 200 kW installed at Missouri University of Science and Technology is modeled in this paper. To help this objective, a fundamental CFD examination was completed to supplement the neutronics investigation on the present reactor. Characteristics of thermal energy removal from a typical research reactor are modeled by numerical thermal transport in porous media. The neutron flux is modeled by the nodal expansion method. For the thermo-hydraulic part, a three-dimensional governing equation is solved by an iterative method to find the steady-state solution of fluid flow and temperature in loss of coolant condition where the heat produced in the reactor core is removed by free convection. The profiles of heat flux for various power levels are benchmarked. Pressure, temperature, and velocity contours in the power passage were assessed at 300 kW and 500 kW power levels. To reduce the computational cost, a porous media approach for the whole geometry was utilized. The numerical results agree with the experimental results. The developed model can be used for safety and reliability analysis for various loss of coolant accidents.
Copyright © by EnPress Publisher. All rights reserved.