One of the most important ways to achieve the goals stipulated by the Paris (2015) Agree-ment on climate change is to solve a two-fold task: 1) the adsorption of CO2 by the forest communities fcom the atmosphere during global warming and 2) their adaptation to these climate changes, which should ensure the effectiveness of adsorption itself. Report presents the regional experience of the numerical solution of this task. Calculations of the carbon balance of forests in the Oka-Volga River basin were carried out for global forecasts of moderate and extreme warming. The proposed index of labile elastic-plastic stability of forest ecosystems, which characterizes their succession-restorative po-tential, was used as an indicator of adaptation. A numerical experiment was conducted to assess the effect of the elastic-plastic stability of forest formations and the predicted climatic conditions on the carbon balance. In the upcoming 100-year forecast period, the overall stability of forest formations should increase, and to the greatest extent with extreme warming. Accordingly, one should expect a significant increase in the ability of boreal forests to ab-sorb greenhouse gases. It is determined unambiguous picture of a significant increase in the adsorption capacity of boreal forests with a rise in their regenerative potential.
Copyright © by EnPress Publisher. All rights reserved.