All ophiolite associations mark epochs of active tectonic movements, which lead to significant petrological processes and modification of the relief of the Earth's crust. Here we present a geological-petrographical characterization of one ophiolitic associations composed of: a) serpentinites; b) amphibolites-metamorphosed volcanic rocks and tuffs; c) metagabbros and metagabbrodiabases, placed among the Proterozoic metamorphic complex in the Rhodope Massif of Bulgaria on the Balkan Peninsula, South-Eastern Europе. The goal is to clarify the paleogeographical and geological setting during its creation. The methods of lithostratigraphic profiling and correlations on the database of geological field mapping were used, supplemented by microscopic, geochemical and isotopic studies of numerous rock samples. The summarized results confirm a certain stratigraphic level of the Ophiolite Association among the metamorphic complex and a complicated and protracted heterogenetic development, which is typical for the ophiolite associations created in eras of closing oceans, opposite movement of tectonic plates, subduction-obduction environment with appearance of autochthonous Neoproterozoic magmatism. Obducted fragments of serpentinites mark an old erosional continental surface, subsequently covered by transgressively deposited pelitic-carbonate sediments. The general conclusion of our study confirms the concept that the metamorphic complex of the Rhodope Massif represents a unified stratigraphic system consisting of two petrographic groups of different ages, with which we oppose the idea of a trust construction, launched by a group of geologists.
The holding of soccer events has an important impact on modern urban activities, which is conducive to the economic development, social harmony, cultural integration and regional integration of cities. However, massive energy is consumed during the event preparation and infrastructure construction, resulting in an increase in the city’s carbon emissions. For the sustainable development of cities, it is important to explore the theoretical mechanism and practical effectiveness of the relationship between soccer events and urban carbon emissions, and to adopt appropriate policy management measures to control carbon emissions of soccer events. With the development of green technology, digitalization, and public transportation, the preparation and management methods of soccer events are diversified, and the possibility of carbon reduction of the event is further increased. This paper selects 17 cities in China from 2011 to 2019 and explores the complex impact of soccer events on urban carbon emissions by using green technology innovation, digitalization level and public transportation as threshold variables. The results show that: (1) Hosting soccer events increases carbon emissions with an impact coefficient of 0.021; (2) There is a negative single-threshold effect of green innovation technology, digitalization level and public transportation on the impact of soccer events on carbon emissions, with the impact coefficients of soccer events decreasing by 0.008, 0.01 and 0.06, respectively, when the threshold variable crosses the threshold. These findings will enhance the attention of city managers to the management of carbon emissions from soccer events and provide guidance for reducing carbon emissions from soccer events through green technology innovation, digital means and optimization of public transportation.
The direct expansion heat pump with solar energy is an energy conversion system used for water heating applications, air heating for air conditioning buildings, water desalination, solar drying, among others. This paper reviews the main designs and analysis of experiments in order to identify the fundamental objectives of any experiment which may be: to determine the factors that have a significant influence, to obtain a mathematical model and/or to optimize performance. To achieve this task, the basic and advanced configuration of this system is described in detail in order to characterize its thermal performance by means of energy analysis and/or exergy-based analysis. This review identifies possible lines of research in the area of design and analysis of experiments to develop this water heating technology for industrial applications.
Continuous usage is crucial for ensuring the longevity of technological advancements. The success of e-government is contingent upon its ongoing use, rather than its initial acceptance. Nevertheless, there has been a dearth of scholarly research on the ongoing use of e-government services. The objective of this study was to identify the primary factors that influences the continued use of e-government services in Indonesia. The research model was created by integrating both Expectation Confirmation Model and Technology Acceptance Model, two theories that are frequently employed in the adoption of technology. The data was obtained by administering an online survey to 217 Indonesian citizens who had previously utilized the Online Citizen Aspiration and Complaints Service (LAPOR) e-Government services. The results indicate that perceived ease of use had a substantial impact on citizen satisfaction and perceived usefulness. In contrast to previous research conducted in the context of e-Government, it was found that perceived usefulness did not have a significant correlation with the intention to continue using the system. The most significant predictor of continued intention to use was citizen satisfaction. Surprisingly, satisfaction was more significantly influenced by perceived ease of use than perceived usefulness. The implications of these findings are elaborated upon.
This research explores the implementation of streamlined licensing frameworks and consolidated procedures for promoting renewable energy generation worldwide. An in-depth analysis of the challenges faced by renewable energy developers and the corresponding solutions was identified through a series of industry interviews. The study aims to shed light on the key barriers encountered during project development and implementation, as well as the strategies employed to overcome these obstacles. By conducting interviews with professionals from the renewable energy sector, the research uncovers a range of common challenges, including complex permitting processes, regulatory uncertainties, grid integration issues, and financial barriers. These challenges often lead to project delays, increased costs, and limited investment opportunities, thereby hindering the growth of renewable energy generation. However, the interviews also reveal various solutions and best practices employed by industry stakeholders to address these challenges effectively. These solutions encompass the implementation of streamlined licensing procedures, such as single licenses and one-stop services, to simplify and expedite the permitting process. Additionally, the development of clear and stable regulatory frameworks, collaboration between public and private entities, and improved grid infrastructure were identified as key strategies to overcome regulatory and grid integration challenges. The research findings highlight the importance of collaborative efforts between policymakers, industry players, and other relevant stakeholders to create an enabling environment for renewable energy development. By incorporating the identified solutions and best practices, policymakers can streamline regulatory processes, foster public-private partnerships, and enhance grid infrastructure, thus catalyzing the growth of renewable energy projects.
A failsafe network design recovering from the stressed condition against a massive supply disruption is generally useful for various applications. Water flow in plants under a tension is inherently vulnerable to an embolism, a water supply cut off, causing a death. However, the function of the network structures of leaf veins and xylem stems effectively reduces the embolism-induced failure. In this study, water transport in plants under the pressurized conditions compared to the normal physiological conditions is observed by X-ray imaing. By examining embolism-induced water supply limits in the architecturally diverse leaf and stem networks, a progressive hydraulic rule has been found: the limited flows in the selected parts of the network structures against a total fail. For a scientific explanation on nanoscale water flow dynamics occurring in plants, temporal meniscus development in the nanomembrane model system is investigated. The pressure-driven hydrodynamic transport phenomena can be explained to follow network dynamics of the modified imbibition typically occuring in nanostrutcures. This study contributes to a variety of design technologies of networked materials against the spread of flow damages under the stressed conditions.
Copyright © by EnPress Publisher. All rights reserved.