Sustainable ocean tourism is required to establish a balance between the environmental, economic, social and cultural aspects of ocean tourism development. Sustainable ocean tourism also contributes to local and national economies, enhancing the quality of social life and protecting the ecology. Sustainable ocean tourism expands the positive contribution of tourism to biodiversity conservation and poverty reduction and aims to attain the common goals of sustainable developments for ocean tourism. Sustainable ocean tourism is possible due to the roles of regulators and private and government institutions. Government policies, regulations and guidelines play vital roles towards achieving the sustainability of ocean tourism. However, the role of institutions also cannot be ignored, which provide support in the innovation of technologies and the implementation of policies. The paper targets to investigate the roles of regulations, policies and institutions in the sustainability of ocean tourism. A primary online survey on the perception of tourism experts was conducted for this study using Google Forms. The tourism experts were invited from all over the world to participate in the survey. The study received a total of 33 responses, out of which only 30 valid responses were considered. Using the Tobit regression model, the study found that, while regulations in India relative to foreign countries significantly boost the sustainability of ocean tourism, government policies and public institutions in India relative to foreign countries remain insignificant in predicting the sustainability of ocean tourism. Therefore, government policies and public institutions in India need to be revised and reformulated to make them important drivers of the sustainability of ocean tourism.
Mapping land use and land cover (LULC) is essential for comprehending changes in the environment and promoting sustainable planning. To achieve accurate and effective LULC mapping, this work investigates the integration of Geographic Information Systems (GIS) with Machine Learning (ML) methodology. Different types of land covers in the Lucknow district were classified using the Random Forest (RF) algorithm and Landsat satellite images. Since the research area consists of a variety of landforms, there are issues with classification accuracy. These challenges are met by combining supplementary data into the GIS framework and adjusting algorithm parameters like selection of cloud free images and homogeneous training samples. The result demonstrates a net increase of 484.59 km2 in built-up areas. A net decrement of 75.44 km2 was observed in forest areas. A drastic net decrease of 674.52 km2 was observed for wetlands. Most of the wastelands have been converted into urban areas and agricultural land based on their suitability with settlements or crops. The classifications achieved an overall accuracy near 90%. This strategy provides a reliable way to track changes in land cover, supporting resource management, urban planning, and environmental preservation. The results highlight how sophisticated computational methods can enhance the accuracy of LULC evaluations.
Problem: in recent years, new studies have been published on biological effects of strong static magnetic fields and on thermal effects of high-frequency electromagnetic fields as used in magnetic resonance imaging (MRI). Many of these studies have not yet been incorporated into current safety recommendations. Method: scientific publications from 2010 onwards on the biological effects of static and electromagnetic fields of MRI were searched and evaluated. Results: new studies confirm older work that has already described effects of static magnetic fields on sensory organs and the central nervous system accompanied by sensory perception. A new result is the direct effect of Lorentz forces on ionic currents in the semicircular canals of the vestibular organ. Recent studies on thermal effects of radiofrequency fields focused on the development of anatomically realistic body models and more accurate simulation of exposure scenarios. Recommendation for practice: strong static magnetic fields can cause unpleasant perceptions, especially dizziness. In addition, they can impair the performance of the medical personnel and thus potentially endanger patient safety. As a precaution, medical personnel should move slowly in the field gradient. High-frequency electromagnetic fields cause tissues and organs to heat up in patients. This must be taken into account in particular for patients with impaired thermoregulation as well as for pregnant women and newborns; exposure in these cases must be kept as low as possible.
Kinnow production is hampered due to the lack of micronutrient applications such as zinc (Zn), iron (Fe), and manganese (Mn), which play a significant role in the metabolic activities of the plant, affecting yield and quality. The farmers of the region use mineral micronutrient fertilizers, but it leads to phytotoxicity due to unoptimized fertilizer application dose. In the present investigation, an attempt has been made to optimize the Zn, Mn, and Fe minerals dose as tank mix foliar application for improvement of fruit yield, quality, and uptake of nutrients. The twelve combinations of different doses of zinc sulphate, manganese sulphate, and ferrous sulphate fertilizers replicated three times were tested at kinnow orchards established at Krishi Vigyan Kendra, Bathinda, Punjab, India. The data revealed that the fruit drop was significantly low in the treatment F12 (43.4%) (tank mix spray of 0.3% ZnSO4 + 0.2% MnSO4 + 0.1% FeSO4 ) compared to control treatment. The fruit yield per tree was significantly higher in the treatment F12 compared to untreated control. The juice percentage was also recorded higher in treatment F12 as compared to control, and the juice percentage improved by 2.6%. The leaf nutrient analysis also revealed translocation of higher amount of nutrient from leaf to fruit under optimized supply of micronutrient. Thus, the application of tank mix spray of 0.3% ZnSO4 + 0.2% MnSO4 + 0.1% FeSO4 may be used for better fruit yield and quality.
The state delivery of affordable and sustainable housing continues to be a complicated challenge in Africa, and there is a need to encourage private sector participation. As a result, this study examines the risks associated with private sector participation in affordable housing and supporting infrastructure investment and the strategies towards mitigating the risks from an Afrocentric perspective. The evidence from a systematic literature review was coupled with the opinion of an international expert panel to address the paper’s aim and provide recommendations for developing improved housing and supporting infrastructure in Sub-Saharan Africa. The review outcomes and the qualitative data from the panel discussion were analysed using thematic analysis. The results revealed that market dynamics, land supply and acquisition constraints, cost of construction materials, unsupportive policies, and technical and financial factors constitute risks to affordable housing in the region. Mitigation strategies include leveraging joint efforts, strengths, and resource bases, increasing access to land and finance for private sector participation, developing a supportive government framework to promote an enabling environment for easy access to land acquisition and development finance, local production of building materials, research and technology adoption. In line with the United Nations (UN) Agenda 2030 targets and principles, reforms are required across the housing value chain, involving the private sector and community. Application of the study’s recommendations could minimise the risks of affordable housing delivery and enhance private sector participation.
Copyright © by EnPress Publisher. All rights reserved.