Plum (Prunus domestica) is a seasonal nutraceutical fruit rich in many functional food nutrients such as vitamin C, antioxidants, total phenolic content, and minerals. Recently, researchers have focused on improvised technologies for the retention of bioactive compounds during the processing of perishable fruits; plum is one of these fruits. This study looked at how the percentage of moisture content and percentage of acidity were affected by conventional drying and osmotic dehydration. Total phenolic content (mg GA/100 g of plum), total anthocyanin content (mg/100 g), and vitamin C (mg/100 g) Conventional drying of fruit was carried out at 80.0 ℃ for 5 h. At various temperatures (45.0 ℃, 50.0 ℃, and 55.0 ℃) and hypertonic solution concentrations (65.0 B, 70.0 B, and 75.0 B), the whole fruit was osmotically dehydrated. It was observed that the osmotically treated fruit retains more nutrients than conventionally dried fruit. The total phenolic content of fruit significantly increased with the increase in process temperature. However, vitamin C and total anthocyanin content of the fruit decreased significantly with process temperature, and hypertonic solution concentration was observed. Hence, it was concluded that osmodehydration could be employed for nutrient retention in plum fruit over conventional drying. This process needs to be further refined, improvised, and optimised for plum processing.
The Sipongi System is essential in dealing with forest and land fires because this system provides real-time data that empowers stakeholders and communities to proactively overcome fire dangers. Its advantages are seen in its ability to provide detailed information regarding weather conditions, wind patterns, water levels in peatlands, air quality, and responsible work units. This data facilitates efficient decision-making and resource allocation for fire prevention and control. As an embodiment of Collaborative Governance, the Sipongi System actively involves various stakeholders, including government institutions, local communities, environmental organizations and the private sector. This cooperative approach fosters collective responsibility and accountability, improving fire management efforts. The Sipongi approach is critical in reducing forest and land fires in Indonesia by providing real-time data and a collaborative governance model. This results in faster response times, more effective fire prevention and better resource allocation. Although initially designed for Indonesia, the adaptable nature of the system makes it a blueprint for addressing similar challenges in other countries and regions, tailored to specific needs and environmental conditions. Qualitative research methods underlie this study, including interviews with key stakeholders and analysis of credible sources. Government officials, community leaders, environmental experts and organizational representatives were interviewed to comprehensively examine the mechanisms of the Sipongi System and its impact on forest and land fire management in Indonesia. Future research should explore the application of Sipongi Systems and collaborative governance in various contexts by conducting comparative studies across countries and ecosystems. Additionally, assessing the long-term impact and sustainability of the Sipongi System is critical to evaluating its effectiveness over time.
Himalayan ‘Ecotone’ temperate conifer forest is the cradle of life for human survival and wildlife existence. Human intervention and climate change are rapidly degrading and declining this transitional zone. This study aimed to quantify the floristic structure, important value index (IVI), topographic and edaphic variables between 2019 and 2020 utilizing circular quadrant method (10m × 10m). The upper-storey layer consisted of 17 tree species from 12 families and 9 orders. Middle-storey shrubs comprise 23 species representing 14 families and 12 orders. A total of 43 species of herbs, grasses, and ferns were identified from the ground-storey layer, representing 25 families and 21 orders. Upper-storey vegetation structure was dominated by Pinus roxburghii (22.45%), while middle-storey vegetation structure was dominated by Dodonaea viscosa (7.69%). However, the ground layer vegetation was diverse in species composition and distribution. By using Ward’s agglomerative clustering technique, the floral vegetation structure was divided into three floral communities. Ailanthus altissima, Pinus wallichiana, and P. roxburghii had the highest IVI values in Piro–Aial (Group 2), Piwa–Quin (Group 3) and Aial–Qugal (Group 2). The IVI values for Aesculus indica, Celtis australis, and Quercus incana in Aial-Qugal (Group 2) were not determined. Nevertheless, eleven of these species had 0 IVI values in Piro–Aial (Group 2) and Piwa–Quin (Group 3). Based on the CCA ordination biplot, significant differences were observed in floral characteristics and distribution depending on temperature, rainfall, soil pH, altitude, and topographic features. Based on Ward’s agglomerative clustering, it was found that Himalayan ‘Ecotone’ temperate conifer forests exhibit a rich and diverse floristic structure.
Cocoa is important for the economy and rural development of Ghana. However, small-scale cocoa production is the leading agricultural product driver of deforestation in Ghana. Uncertain tree tenure disincentivizes farmers to retain and nurture trees on their farms. There is therefore the call for structures that promote tree retention and management within cocoa farming. We examined tenure barriers and governance for tree resources on cocoa farms. Data was collected from 200 cocoa farmers from two regions using multistage sampling technique. Information was gathered on tree ownership and fate of tree resources on cocoa farms, tree felling permit acquisition and associated challenges and illegal logging and compensation payments on cocoa farms. Results suggest 62.2% of farmers own trees on their farms. However, these farmers may or may not have ownership rights over the trees depending on the ownership of their farmlands. More than half of the farmers indicated they require felling permits to harvest trees on their farms, indicative of the awareness of established tree harvesting procedures. Seventy percent of the farmers have never experienced illegal logging on their farms. There is however the need to educate the remaining 30% on their rights and build their compensation negotiation powers for destructions to their cocoa crops. This study has highlighted ownership and governance issues with cocoa farming and it is important for the sustainability of on-farm tree resources and Ghana’s forest at large.
In the era of rapid information technology development, artificial intelligence (AI) and virtual reality (VR) technologies have gradually infiltrated the field of university English teaching, brought significant applications and impacted to English language learning in listening, speaking, writing, translation, and personalized learning. AI plays a vital role as an auxiliary teaching method in university English instruction, and the integration of VR technology further enhances teaching efficiency. This research will propose relevant recommendations to provide theoretical references for university English education in the age of AI, while also offering insights and guidance to educators in the education industry during the informatization reform of education.
Copyright © by EnPress Publisher. All rights reserved.