The women’s sector in the academe is one of the most affected profiles during the COVID-19 pandemic which directly ravages their livelihood and other economic activities. Thus, this research project investigated the economic situations of 30 private and public-school teachers who were displaced from their occupations or were forcibly deprived of income-generating activities. In-depth interviews as research instruments were employed in the study to extract responses on how the educators creatively apply adaptive economic strategies and how government should aid them during a global crisis. The research findings showed that the pandemic has affected the economic activities of the respondents including the loss of their livelihood and other economic sidelines. They responded to these economic effects through adaptive strategies using diversifying and analyzing trends, using digital technology resources, data-driven, acquiring new alternative skills, pricing strategy, and becoming an expert. Results dictated that government could support affected women by initiating training options, homepreneurship support, encouraging independent income-earners, financial management and tax breaks, and industry compatibility endorsement. This study is important to map out the specific economic effects of the pandemic and aid them with initiatives by providing them with concrete economic tools and programs.
This contribution aims to appraise, analyze and evaluate the literature relating to the interaction of electromagnetic fields (EMF) with matter and the resulting thermal effects. This relates to the wanted thermal effects via the application of fields as well as those uninvited resulting from exposure to the field. In the paper, the most popular EMF heating technologies are analyzed. This involves on the one hand high frequency induction heating (HFIH) and on the other hand microwave heating (MWH), including microwave ovens and hyperthermia medical treatment. Then, the problem of EMF exposure is examined and the resulting biological thermal effects are illuminated. Thus, the two most common cases of wireless EMF devices, namely digital communication tools and inductive power transfer appliances are analyzed and evaluated. The last part of the paper concerns the determination of the different thermal effects, which are studied and discussed, by considering the governing EMF and heat transfer (or bio heat) equations and their solution methodologies.
A theory of many-body wave scattering is developed under the assumption a << d << λ, where a is the characteristic size of the small body, d is the distance between neighboring bodies and λ is the wave-length in the medium in which the bodies are embedded. The multiple scattering is essential under these assumptions. The author’s theory is used for creating materials with a desired refraction coefficient. This theory can be used in practice. A recipe for creating materials with a desired refraction coefficient is formulated. Materials with a desired radiation pattern, for example, wave-focusing materials, can be created.
The PPP scholarly work has effectively explored the material values attached to PPPs such as efficiency of services, value for money and productivity, but little attention has been paid to procedural public values. This paper aims to address this gap by exploring how Enfidha Airport in Tunisia failed to achieve both financial and procedural values that were expected from delivering the airport via the PPP route, and what coping strategies the public and private sectors deployed to ameliorate any resultant value conflicts. Based on the analysis of Enfidha Airport, it is argued that PPP projects are likely to fail to deliver financial and procedural values when the broader institutional context is not supportive of PPP arrangements, and when political and security risks are not adequately counted for during the bidding process.
The conversion of the energy supply to renewable sources (wind, photovoltaics) will increase the volatility in electricity generation in the future. In order to ensure a balanced power balance in the power grid, storage is required - not only for a short time, but also seasonally. The bidirectional coupling of existing energy infrastructure with the power grid can help here by using the electricity in electrolysis systems to produce hydrogen. The hydrogen can be mixed with natural gas in the existing infrastructure (gas storage, pipelines) to a limited extent or converted directly to methane in a gas-catalytic reaction, methanation, with carbon dioxide and/or carbon monoxide. By using the natural gas infrastructure, the electricity grids are relieved and renewable energies can also be stored over long periods of time. Another advantage of this technology, known as “Power-to-Gas”, is that the methane produced in this way represents a sink for CO2 emissions, as it replaces fossil sources and CO2 is thus fed into a closed cycle.
Research in the field of Power-to-Gas technology is currently addressing technological advances both in the field of electrolysis and for the subsequent methanation, in particular to reduce investment costs. In the field of methanation, load-flexible processes are to be developed that are adapted to the fluctuating supply of hydrogen. The profitability of the Power-to-Gas process chain can be increased through synergistic integration into existing industrial processes. For example, an integrated smelting works offers a promising infrastructural environment, since, on the one hand, process gases containing carbon are produced in large quantities and, on the other hand, the oxygen as a by-product from the water electrolysis can be used directly. Such concepts suggest an economic application of Power-to-Gas technology in the near future.
Copyright © by EnPress Publisher. All rights reserved.