Metal organic framework is a class of hybrid network of supramolecular solid materials comprised of a large number of inorganic and organic linkers all bounded to metal ions in a well-organized fashion. This type of compounds possess a greater surface area with an advantage of changing pore sizes, diversified and beautiful structure which withdrew an intense interest in this field. In the present review articles, the structural aspects, classification, methods of synthesis, various factors affecting the synthesis and stability, properties and applications have been discussed. Recent advances in the field and new directions to explore the future scope and applications of MOFs have been incorporated in this article to provide current status of the field.
Asian Infrastructure Investment Bank’s president Mr. Jin Liqun shares with JIPD Editor-in-Chief, Dr. Gu Qingyang, his passion for infrastructure finance, as he reflects upon his goal of steering an environmentally friend and corruption-free AIIB toward building social-impacting infrastructure across Asia.
From governmental departments to international financial institutes, Mr. Jin Liqun has undertaken almost every essential role in finance. With his vast experience across the private and public sectors, particularly in multilateral development banks, Mr. Jin Liqun currently serves as Asian Infrastructure Investment Bank (AIIB)’s first President since its founding in 2016, following a stint as Secretary-General of the Multilateral Interim Secretariat created to establish the bank. Beginning from his two decades of governmental experience at the Chinese Ministry of Finance, rising from the rank of Deputy Director General to Vice Minister, Mr. Jin was then called to serve as Vice President, and then Ranking Vice President, of the Asian Development Bank, and later as Alternate Executive Director for China at the World Bank and at the Global Environment Facility. Mr. Jin had also served as Chairman of China International Capital Corporation Ltd., China’s first joint-venture investment bank, in addition to serving as Chairman of the Supervisory Board of the sovereign wealth fund China Investment Corporation and as Chairman of the International Forum of Sovereign Wealth Funds.
Afforestation is a main tool for preventing desertification and soil erosion in arid and semiarid regions of Iran. Large-scale afforestation, however, has poorly understood consequences for the future ecosystems in the term of ecosystems protection. The objective of the present study is to identify changes in soil properties following different intervals of planting of Ailanthus altissima (tree of heaven) in semiarid afforestation of Iran (Chitgar Forest Park, Tehran). For this purpose, sand, silt and clay ratios, bulk density, soil moisture, pH, electrical conductivity, phosphorus, potassium, magnesium, calcium, sodium, total soil N, and total carbon was measured. Our study highlighted the potential of the invasive trees by A. altissima, to alter soil properties along chronosequence. Almost all soil quality attributes showed a declining trend with stand age. A continuous decline in soil quality indicated that the present land management may not be sustainable. Therefore, an improved management practice is imperative to sustain soil quality and maintain long-term productivity of plantation forests. Thinning activity will be required to reduce the number of trees competing for the same nutrients especially in a older stand to protect forest soils.
This problem is a solar hut photovoltaic cell in the attached and overhead two installation methods, the type of photovoltaic cells and array mode and inverter type optimization design issues. In question 1, since the photovoltaic cells are attached to the roof and exterior surfaces, the direction and angle of the battery are uniquely determined by the direction and angle of the attached surface. The problem is translated to optimize the installation of a certain type on a single surface area (array) of photovoltaic cells, so that the total amount of solar photovoltaic power generation as much as possible, and the unit power generation costs as small as possible, which is a multi-objective optimization problem. The problem can be discussed in the ideal environment in a single surface area of the battery installation optimization program, and then the actual environment of the multi-surface optimization. In the solution to Problem 1, the unit on the south of the roof of the battery at the moment to accept the solar energy formula is generated. The definition of and is the moment of direct radiation intensity, for the moment the sun and the south of the roof of the plane where the angle, for the level of horizontal radiation intensity, for the south of the roof and the horizontal angle, the planefor the plane, the center of the heart, the vertical upward direction is the axis of the positive coordinate system, obtained with the sun height angle , the sun azimuth , red angle, angle and the sun when the relationship is generated. The conclusion is only installed in the small roof surface type of battery C11, and the rest of the surface is not installed. 35 years of electricity generation is 77126 degrees, the economic benefits of 16,488 yuan, the recovery period of 21.3 years. In question 2, because the photovoltaic cells in the roof and the external wall surface can be installed overhead, the panel orientation and tilt will affect the efficiency of photovoltaic cells. Therefore, in the optimization scheme of Problem 1, the orientation and inclination of the panel on each surface are further adjusted to calculate the optimum orientation and inclination of the panel on each surface. The problem can be in the ideal weather environment to establish the sun running and the battery board efficiency model, and then the measured environment test. The optimal orientation of the panel is southward, and the optimal angle with the ground plane is 39.89 degrees. The conclusion is only installed in the small roof surface type of battery C11, and the rest of the surface is not installed. 35 years of generating capacity of 82165.2 degrees, the economic benefits of 18,998 yuan, the recovery period of 13 years. In question 3, by the optimization of the above two issues, in the building to meet the requirements of the hut under the design of the various aspects of the cabin and battery installation, and further optimize the total power generation of the hut, economic benefits. The whole model solver is run in MATLAB7.0.
The fresh dried pollen of grape and seedless grape varieties were used as the research material. Each cultivar was stored at room temperature, 5 C, 0 C, -18 C and -40 C respectively. Sucrose 200g / L + boric acid 50mg / L + agar 8g / L as the nutrient substrate, and the comparative study on the germination and culture of the nuclear breed and the seedless cultivar. The results showed that the pollen viability decreased with the increase of storage time at different temperatures. The pollen viability decreased at -18 C and -40 , and the pollen viability decreased at the same temperature The There was a significant difference in pollen viability between different cultivars at the beginning of storage, and the pollen viability of the kernel breed was higher than that of the seedless grape.
The main reason for the formation of nano-biotechnology is due to the penetration of nanotechnology in the biological field, nanotechnology research center is the study of nano-drug carrier. Nano-drug system targeted drug delivery to achieve drug release, increase the insoluble drugs and peptide drug bio-efficiency, reduce the toxicity and application of drugs and other aspects of the development of good prospects, and thus become one of the key research in recent years’ field. Synthesis and application of nanometer drug carriers this review is presented in recent years and its application to provide a comprehensive basis for the treatment process. Describes the nature and preparation of nano-drug carrier methods, in recent years, people have been widely concerned by scholars. Compared with the nano-drug delivery, the general pharmaceutical cannot have to extend the role of drugs, strong efficacy, and the advantages of small drug response. Nano-materials, the specific surface area, surface activity, high catalytic efficiency, surface active center, adsorption capacity and other characteristics, which has many excellent features and new features.
Copyright © by EnPress Publisher. All rights reserved.