This study aims to explore the implications of imported electrical equipment in Indonesia, analysing both short-term and long-term impacts using a quantitative approach. The research focuses on understanding how various economic factors, such as domestic production, international pricing, national income, and exchange rates, influence the country’s import dynamics in the electrical equipment sector. Employing an Error Correction Model (ECM) for regression analysis, the study utilises time-series data from 2007 to 2021 to delve into the complex interplay of these variables. The methodology involves a comprehensive analysis using the Augmented Dickey-Fuller and Phillips-Perron tests to assess the stationarity of the data. This approach ensures the robustness of the ECM, which is employed to analyse the short-term and long-term effects of the identified variables on electrical equipment imports in Indonesia. The results reveal significant relationships between these economic factors and import levels. In the short term, imports are shown to be sensitive to changes in domestic economic conditions and international market prices, while in the long term, the country’s economic growth, reflected through GDP, emerges as a significant determinant. The findings suggest that Indonesia’s electrical equipment import policies must adapt highly to domestic and international economic changes. In the short term, a responsive approach is required to manage the immediate impacts of market fluctuations. The study highlights the importance of aligning import strategies with broader economic growth and environmental sustainability goals for long-term sustainability. Policymakers are advised to focus on enhancing domestic production capabilities, reducing import dependency, and ensuring that environmental considerations are integral to import policies. This study contributes to understanding import dynamics in a developing country context, offering valuable insights for policymakers and industry stakeholders in shaping strategies for economic growth and sustainability in the electrical equipment sector. The findings underscore the need for a balanced, data-driven approach to managing imports, aligning short-term responses with long-term strategic objectives for Indonesia’s ongoing development and industrial advancement.
Indonesia, an emerging archipelagic nation, possesses abundant natural resources spanning marine, land (including forests and water sources), and diverse biological riches. The agricultural sector emerges as a pivotal driver of growth across the country, exhibiting extensive distribution. Consequently, there is an urgent imperative for comprehensive research to bolster and optimize the performance of this sector. This study aims to meticulously analyze and scrutinize macroeconomic variables aimed at enhancing Indonesia’s agricultural sector. Through the utilization of a dynamic panel model, the study zeroes in on crucial variables: economic growth in the agricultural sector, farmer terms of exchange, human development index, population density, inflation, average daily wages, and lagged economic growth data from each province in Indonesia. The best model for dynamic panel testing, employing both First Difference Generalized Method of Moments (FD-GMM) and Generalized Method of Moments System (SYS-GMM) approaches, is identified as the SYS-GMM model. This model exhibits unbiased and consistent estimation, as evidenced by the Arellano-Bond (AB) test and Sargan test results. The analysis conducted using this selected model reveals notable findings. Lagging agricultural sector performance, human capital measured by the Human Development Index (HDI), and farmers’ exchange rates are found to significantly and positively influence the economic growth of the agricultural sector. Conversely, inflation exerts a significant and negative impact on sectoral growth. However, wage levels and population density do not demonstrate a significant partial effect on the economic growth of the agricultural sector.
Historically, transportation projects and urban mobility policies overlook the dimension of social sustainability, mainly focusing on economic and environmental criteria. This neglect, seen enhanced in the Global South, leads to long travel times, growing congestion, reliance on motorcycles, high traffic accident rates, and limited access to public transport, jobs, and urban facilities, especially for the more vulnerable population. In light of these issues, this paper proposes the Social Sustainability of Urban Mobility (SSUM) approach as an analytical framework that assesses the state of social sustainability in urban mobility by applying a Systematic Literature Review where three gaps were found. First, by tailoring the SSUM approach to the context of the Global South, it is possible to address the population-focused gap in urban mobility. Second, in the literature review, a theoretical gap defining social sustainability in urban mobility and its three primary categories has yet to reach a consensus among practitioners and academics. Finally, more empirical research should be conducted to discuss methodological aspects of operationalizing the SSUM approach through the three main categories: accessibility, the sustainability of the community, and institutionality. The SSUM approach promotes implementing a sustainable urban agenda that builds inclusive, equitable, and just cities in urban mobility.
This research investigates the impact of modern technological methods of knowledge management (KM) and total quality management (TQM) on the performance of faculty members in educational colleges in Jordan. Drawing on a survey conducted with 306 faculty members, the study examines the influence of technology on teaching methodologies and academic quality within the Jordanian higher education context. The study utilizes the Technology Acceptance Model (TAM) to back up the modern technological methods of knowledge management (KM) and total quality management (TQM) models. The findings reveal a generally positive perception among respondents regarding the beneficial effects of modern technological tools on teaching effectiveness, collaboration, and innovation. Additionally, technology-enhanced TQM practices were found to contribute to improvements in curriculum design, student engagement, and administrative processes. Regression and correlation analyses support significant relationships between technology-enabled KM and TQM practices and faculty performance, highlighting the transformative role of technology in shaping the future of higher education in Jordan. Recommendations are provided for educational institutions to enhance the integration of technology and foster a culture of innovation and continuous improvement among faculty members.
Baribis Fault disasters caused the loss of human lives. This study investigates the strategies local communities employ in Indonesia to cope with disasters. A qualitative study was conducted on various cultural strategies used to mitigate disasters in relevant areas. These strategies were selected based on the criteria of locally based traditional oral and written knowledge obtained through intensive interviews. The study reveals that technological and earth science solutions are insufficient to resolve disasters resulting from Baribis Fault activity. Still, local culture and knowledge also play a crucial role in disaster mitigation. The study contributes to a deeper understanding of how cultural strategies avoid disasters and highlights the need to transform local knowledge regarding effective cultural strategies for mitigating such disasters. This transformation can have positive psychological implications and enhance community harmony.
The objective of this study was to examine the impact of utilizing smart algorithms on enhancing the operational performance of sports facilities in the Kingdom of Saudi Arabia. These algorithms, based on principles and concepts of artificial intelligence, aim to achieve functions such as learning, decision-making, data analysis, pattern recognition, planning, and problem-solving. The study aimed to identify the extent to which smart algorithms are utilized in sports facilities, assess the level of operational performance, explore the correlation between the use of smart algorithms and operational performance, and predict the level of operational performance based on the use of smart algorithms. The study employed a descriptive approach, specifically utilizing a survey study method. Participants included chairmen and members of boards of directors, executive directors, sports directors, administrators, specialists, and members of various committees. The study sample was intentionally selected from different categories within the study population. Two questionnaires were used to collect data from 325 participants. The findings revealed a lack of utilization of smart algorithms in sports facilities in the Kingdom of Saudi Arabia, indicating a low level of operational performance. Additionally, a correlation was observed between the use of smart algorithms and operational performance, suggesting that the level of operational performance can be predicted based on the utilization of smart algorithms. The study concludes that the implementation of intelligent algorithms can enhance the operational performance of sports facilities in the Kingdom of Saudi Arabia. It provides valuable insights into the effects of utilizing smart algorithms on improving operational performance.
Copyright © by EnPress Publisher. All rights reserved.