The temporomandibular joint (TMJ) is considered a bicondylar diarthrosis type joint. Imaging evaluation is a fundamental part of its assessment, which should include both bony and soft tissue characteristics and the relationship between them. Magnetic resonance imaging (MRI) represents the gold standard for the study of soft tissues; however, up to now, its main application continues to be the visualization of the articular disc. For this reason, the present article aimed to point out the information available in the literature regarding the visualization of the joint capsule in MRI and to evaluate it as an independent structure.
The micro staring hyperspectral imager can simultaneously acquire two spatial and one spectral images, and only record the external orientation elements of the entire hyperspectral image rather than the external orientation elements of each frame of the image, which avoids the geometric instability during scanning, effectively solves the problem of large geometric deformation of the small line scanning hyperspectral imager, and is suitable for the small UAV load platform with unstable attitude. At present, most of the research focuses on the radio-metric correction method of line scan hyperspectral imager. The application time of staring hyperspectral imager is short, and there is no mature data processing re-search at home and abroad, which hinders the application of UAV micro staring hyperspectral imaging system. In this paper, the calibration method of the linearity and variability of the radiation response of the micro staring hyperspectral imager on the UAV is studied, and the effectiveness of this method is quantitatively evaluated. The results show that the hyperspectral image has obvious vignetting effect and strip phenomenon before the correction of radiation response variability. After the correction, the radiation response variation coefficient of pixels in different bands decreases significantly, and the vignetting effect and image strip decrease significantly. In this paper, a multi-target radiometric calibration method is proposed, and the accuracy of radiometric calibration is verified by comparing the calibrated hyperspectral image spectrum with the measured ground object spectrum of the ground spectrometer. The results show that the calibration results of the multi-target radiometric calibration method show better results, especially for the near-infrared band, and the difference with the surface reflectance measured by the spectrometer is small.
Deficiencies in postharvest technology and the attack of phytopathogens cause horticultural products, such as tomatoes to have a very short shelf life. In addition to the economic damage, this can also have negative effects on health and the environment. The objective of this work is to evaluate an active coating of sodium alginate in combination with eugenol-loaded polymeric nanocapsules (AL-NP-EUG) to improve the shelf life of tomato. Using the nanoprecipitation technique, NPs with a size of 171 nm, a polydispersity index of 0.113 and a zeta potential of −2.47 mV were obtained. Using the HS-SPME technique with GC-FID, an encapsulation efficiency percentage of 31.85% was determined for EUG. The shelf-life study showed that the AL-NP-EUG-treated tomatoes maintained firmness longer than those without the coating. In addition, the pathogenicity test showed that tomatoes with AL-NP-EUG showed no signs of damage caused by the phytopathogen Colletotrichum gloesporoides. It was concluded that the formulation of EUG nanoencapsulated and incorporated into the edible coating presents high potential for its application as a natural nanoconservative of fruit and vegetable products such as tomato.
As an important ecosystem type in the coastal zone, mangroves have important ecological functions, such as maintaining coastal biodiversity, preventing wind and consolidating the coast, promoting silt and building land. It is of great significance to understand the protected status of mangroves in the context of climate change and rapid urbanization. Based on the mangrove classification data from remote sensing interpretation, through vacancy analysis, the in-situ protection status of mangroves in China is analyzed. The results show that the total area of mangroves distributed in China is 264 km2 (excluding the statistical data of Hong Kong, Macao and Taiwan), of which 61.4% are protected in natural reserves. In terms of the main provinces where mangroves are distributed, the mangrove area distributed in Hainan Province is small but the protection proportion is high, while the mangrove area distributed in Guangxi and Guangdong Province is large but the proportion of protected areas is relatively low. Among the three mangrove types, Rhizophora apiculate-Xylocarpus granatum and Rhizophora stylosa-Bruguiera gymnorrhiza had high proportions (>90%) covered by reserves, but relatively small areas. In contrast, Kandelia candel-Aegiceras corniculatum-Avicennia marina had relatively low reserve coverage (52.6%), but a large area. The study puts forward the key areas of mangrove distribution outside the nature reserve, and suggests that they should be protected by delimiting ecological protection red lines.
The porous carbon/Ni nanoparticle composite was prepared by a freeze-drying method using NaCl as the template. It was applied in the effect of the concentration, adsorption time, and temperature of adsorption on the adsorption behavior. The kinetic model and the adsorption isothermic fitting results show that the adsorption behavior fits with the pseudo-secondary dynamics and the Langmuir isothermal model, indicating that the adsorption process is monolayer adsorption. Thermodynamic results indicate that the adsorption process is spontaneous physicochemical adsorption. The fitting showed that the porous carbon/Ni nanoparticle composites reach 217.17 mg·g-1, at 313 K indicates good adsorption for Congo red.
Learning from experience to improve future infrastructure public-private partnerships is a focal issue for policy makers, financiers, implementers, and private sector stakeholders. An extensive body of case studies and “lessons learned” aims to improve the likelihood of success and attempts to avoid future contract failures across sectors and geographies. This paper examines whether countries do, indeed, learn from experience to improve the probability of success of public-private partnerships at the national level. The purview of the paper is not to diagnose learning across all aspects of public-private partnerships globally, but rather to focus on whether experience has an effect on the most extreme cases of public-private partnership contract failure, premature contract cancellation. The analysis utilizes mixed-effects probit regression combined with spline models to test empirically whether general public-private partnership experience has an impact on reducing the chances of contract cancellation for future projects. The results confirm what the market intuitively knows, that is, that public-private partnership experience reduces the likelihood of contract cancellation. But the results also provide a perhaps less intuitive finding: the benefits of learning are typically concentrated in the first few public-private partnership deals. Moreover, the results show that the probability of cancellation varies across sectors and suggests the relative complexity of water public-private partnerships compared with energy and transport projects. An estimated $1.5 billion per year could have been saved with interventions and support to reduce cancellations in less experienced countries (those with fewer than 23 prior public-private partnerships).
Copyright © by EnPress Publisher. All rights reserved.