Major spices crops such as black pepper (Piper nigrum L.), cardamom (Elettaria cardamomum Maton.) and turmeric (Curcuma longa L.) production in India, is sustained losses due to several reasons. Among them, one of the major constraints are nematode infesting diseases, which causes significant yield losses and affecting their productivity. The major nematode pests infesting these crops include burrowing nematode Radopholus similis; root knot nematode, Meloidogyne incognita and M. javanica on black pepper. Whereas, lesion nematode, Pratylenchus sp., M. incognita and R. similis infesting cardamom and turmeric crops. Black pepper is susceptible to a number of diseases of which slow decline caused by R. similis and M. incognita or Phytophthora capsici either alone and in combination and root knot disease caused by Meloidogyne spp. are the major ones. Root knot disease caused by Meloidogyne spp. is major constraints in the successful cultivation and production in cardamom. Turmeric is susceptible to a number of diseases such as brown rot disease is caused by Fusarium sp. and lesion nematode, Pratylenchus sp. and root knot disease caused by M. incognita. Adoption of integrated pest management schedules is important in these crops since excessive use of pesticides could lead to pesticide residues in the produce affecting human health and also causing other ecological hazards.
This paper is devoted to the discussion of dynamical properties of anisotropic dark energy cosmological model of the universe in a Bianchi type-V space time in the framework of scale covariant theory of gravitation formulated by Canuto et al.(phys.Rev.Lett.39:429,1977).A dark energy cosmological model is presented by solving the field equations of this theory by using some physically viable conditions. The dynamics of the model is studied by computing the cosmological parameters, dark energy density, equation of state(EoS) parameter, skewness parameters, deceleration parameter and the jerk parameter. This being a scalar field model gives us the quintessence model of the universe which describes a significant dark energy candidate of our accelerating universe. All the physical quantities discussed are in agreement with the recent cosmological observations.
This paper is concerned with the numerical solution of the mixed Volterra-Fredholm integral equations by using a version of the block by block method. This method efficient for linear and nonlinear equations and it avoids the need for spacial starting values. The convergence is proved and finally performance of the method is illustrated by means of some significative examples.
This paper provides a comparative perspective on infrastructure provision in developing Asia's three largest countries: China, India, and Indonesia. It discusses their achievements and shortfalls in providing network infrastructure (energy, transport, water, and telecommunications) over the past two decades. It documents how three quite distinct development paths—and very different levels of national saving and investment—were manifested in different trajectories of infrastructure provision. The paper then describes the institutional, economic, and policy factors that enabled or hindered progress in providing infrastructure. Here, contrasting levels of centralization of planning played a key role, as did countries’ differing abilities to mobilize infrastructure-related revenue streams such as user charges and land value capture. The paper then assesses future challenges for the three countries in providing infrastructure in a more integrated and sustainable way, and links these challenges with the global development agenda to which the three countries have committed. The concluding recommendations hope to provide a platform for further policy and research dialogue.
A numerical investigation utilizing water as the working fluid was conducted on a 2D closed loop pulsating heat pipe (CLPHP) using the CFD software AnsysFluent19.0. This computational fluid dynamics (CFD) investigation explores three instances where there is a consistent input of heat flux in the evaporator region, but the temperatures in the condenser region differ across the cases. In each case, the condenser temperatures are set at 10 ℃, 20 ℃, and 30 ℃ respectively. The transient simulation is conducted with uniform time steps of 10 s. Generally, the heat rejection medium operated at a lower temperature performs better than at a higher temperature. In this CFD study the thermal resistances gets decreased with the decreasing value of condenser temperatures and the deviation of 35.31% of thermal resistance gets decreased with the condenser region operated at the temperature of 10 ℃.
Copyright © by EnPress Publisher. All rights reserved.