This project is carried out to assess the remediation effect on soil contaminated by molybdenum (Mo), one of heavy metals, through the use of an energy crop, sunflowers. This project explores the integration of phytohormones and chelates in the phytoremediation of soils contaminated by heavy metals, and further assesses the operational measures of remedying heavy-metal contaminated soil with sunflowers, in addition to the related environmental factors. Then the project explores phytohormones and heavy metals on the growth scenario explants (explants morphological analysis) through the experiment. The results indicate that GA3 can increase the growth rate of the plants. The average incremental growth of the heavy-metal-added-only group is 21.0 cm; of the GA3-added group it is 21.9 cm; of the EDDS-added group, it is 20.3 cm; of the GA3+ EDDS-added group, it is 21.7 cm. Compared with the conventional methods of phytoremediation, these integrated measures can actually spur the growth of plants.
The flipped classroom (FC) model has long brought significant benefits to higher education, secondary, and elementary education, particularly in improving the quality and effectiveness of learning. However, the implementation of FC model to support elementary students in developing self-learning skills (autonomous learning, independent study, self-directed learning) through technology still faces numerous challenges in Vietnam due to various influencing factors. Data for the study were collected through direct questionnaires and online surveys from 517 teachers at elementary schools in Da Nang, Vietnam. Based on SEM analysis, the study identified factors such as perceived usefulness, accessibility, desire, teaching style, and facilitating conditions. The research findings indicate that factors like the perceived effectiveness of the model, teaching style, and facilitating conditions have a positive correlation with the decision to adopt the FC model. Therefore, to encourage the use of the FC model in teaching, it is essential to raise awareness of the model’s effectiveness, improve teaching styles, and create favorable conditions for implementation.
The present study demonstrates the effect of direct solar drying (DSD) and hot air drying (HAD) on the quality attributes of Fuji apple slices. DSD samples took a longer time (150–180 min) to dry and simultaneously reached higher equilibrium moisture content at the end of rehydration than HAD samples. DSD samples have higher rehydration ability, dry matter holding capacity, and water absorption capacity than HAD samples. Among several empirical models, the Weibull model is the best fit with higher R2 (0.9977), lower root mean square (0.0029), and chi-square error (0.0031) for describing the rehydration kinetics. Rehydrated HAD samples showed better color characteristics than DSD in terms of overall color change, chroma, and hue angle values. Whereas the hardness and chewiness of rehydrated DSD samples were better than HAD samples because of higher dry matter holding capacity in DSD. Apart from color retention, the DSD samples showed better rehydration capacity and a good texture upon rehydration than HAD slices.
In order to evaluate the temporal changes in tree diversity of forest vegetation in Xishuangbanna, Yunnan Province, the study collected tree diversity data from four main forest vegetation in the region through a quadrat survey including tropical rainforest (TRF), tropical coniferous forest (COF), tropical lower mountain evergreen broad-leaved forest (TEBF), tropical seasonal moist forest (TSMF). We extracted the distribution of four forest vegetation in the region in four periods of 1992, 2000, 2009, and 2016 in combination with remote sensing images, using simp son Shannon Wiener and scaling species diversity indexes compare to the differences of tree evenness of four forest vegetation and use the scaling ecological diversity index and grey correlation evaluation model to evaluate the temporal changes of forest tree diversity in the region in four periods. The results show that: (1) The proportion of forest area has a trend of decreasing first and then increasing, which is shown by the reduction from 65.5% in 1992 to 53.42% in 2000, to 52.49% in 2009, and then to 54.73% in 2016. However, the tropical rainforest shows a continuous decreasing trend. (2) There are obvious differences in the contributions of the four kinds of forest vegetation to tree diversity. The order of evenness is tropical rainforest > tropical mountain (low mountain) evergreen broad-leaved forest > warm coniferous forest > tropical seasonal humid forest, and the order of richness is tropical rainforest > tropical mountain (low mountain) evergreen broad-leaved forest > tropical seasonal humid forest > warm coniferous forest, The order of contribution to tree diversity in tropical rainforest > tropical mountain (low mountain) evergreen broad-leaved forest > tropical seasonal humid forest > warm tropical coniferous forest. (3) The tree diversity of tropical rainforests and tropical seasonal humid forests showed a continuous decreasing trend. The tree diversity of forest vegetation in Xishuangbanna in four periods was 1992 > 2009 > 2016 > 2000. The above results show that economic activities are an important factor affecting the biodivesity of Xishuangbanna, and the protection of tropical rainforest is of great significance to maintain the biodiversity of the region.
The obtaining of new data on the transformation of parent materials into soil and on soil as a set of essential properties is provided on the basis of previously conducted fundamental studies of soils formed on loess-like loams in Belarus (15,000 numerical indicators). The study objects are autochthonous soils of uniform granulometric texture. The basic properties without which soils cannot exist are comprehensively considered. Interpolation of factual materials is given, highlighting the essential properties of soils. Soil formation is analyzed as a natural phenomenon depending on the life activity of biota and the water regime. Models for differentiation of the chemical profile and bioenergy potential of soils are presented. The results of the represented study interpret the available materials taking into account publications on the biology and water regime of soils over the past 50 years into three issues: the difference between soil and soil-like bodies; the soil formation as a natural phenomenon of the mobilization of soil biota from the energy of the sun, the atmosphere, and the destruction of minerals in the parent materials; and the essence of soil as a solid phase and as an ecosystem. The novelty of the article study is determined by the consideration of the priority of microorganisms and water regime in soil formation, chemical-analytical identification of types of water regime, and determination of the water regime as a marker of soil genesis.
The growing of plants hydroponically is a soilless form of growing in modern day agriculture. It helps to make feed available for animals throughout the season since it is not affected by what is faced by field grown crops. The use of animal waste, that is, their faeces, in the growth of forage was compared with commercial hydroponics solutions as a way of looking for a reduction in the cost incurred in the purchase of commercial hydroponics solutions. The study evaluated the use of organic nutrient solutions (ONS) alongside a standard/commercial nutrient solution in growing crops hydroponically on the growth, dry matter yield, water use efficiency, and chemical composition of hydroponic maize fodder. The ONS used were formulated from the dried faeces of cattle, poultry, rabbits, and swine. The prepared organic nutrient solutions with the control were used in growing the maize seeds for 10 days, and growth, yield, and chemical composition were determined. Results show the highest (196 g) dry matter yield for maize hydroponic fodder irrigated with poultry ONS. Similarly, maize irrigated with poultry ONS was significantly (P < 0.05) higher in CP content, while it was not significantly different from maize irrigated with cattle, swine, and commercial solutions. A lower water use efficiency value (0.19 kg DM/m3) was recorded for maize irrigated with cattle ONS. According to the study, irrigating maize with different organic nutrient solutions produced maize fodder with a higher yield and a similar chemical composition as the commercial nutrient solution.
Copyright © by EnPress Publisher. All rights reserved.