The study examined the socio-demographic factors affecting access to and utilization of social welfare services in Yenagoa Local Government Area of Bayelsa State, Nigeria. Quantitative and qualitative approaches were adopted to select 570 respondents from the study area. Probability and non-probability sampling techniques were adopted in the selection of communities, and respondents. The quantitative data were analyzed using frequency distribution tables and percentages, while chi-square statistic was used to determine the relationship between socio-demographic variables and access to and utilization of social welfare services. The qualitative data were analyzed in themes as a complement to the quantitative data. This study reveals that although all the respondents reported knowing available social welfare services, 44.3% reported not having access to existing social services due to factors connected to serendipity variables, such as terrain condition, ethnicity and knowing someone in government. Therefore, the study recommends that the government and other stakeholders should push for the massive delivery of much-needed social welfare services to address the issue of welfare service deficit across the nation, irrespective of the ethnic group and whether the community is connected to the government of the day or not, primarily in rural areas.
Surface-enhanced Raman scattering (SERS) spectrum has the characteristics of fast-detection, high-sensitivity and low-requirements for sample pretreatment. It plays a more and more important role in the detection of organic pollutants. In this study, MIL-101 and Au nanoparticles were prepared by hydrothermal method and aqueous solution reduction method respectively, and MIL-101/Au composite nanoparticles were prepared by electrostatic interaction. The SERS properties of the composite substrate were optimized by adjusting the size of Au nanoparticles and the surface distribution density of MIL-101 nanoparticles. The detection limit of Rhodamine 6G (R6G) for the composite substrate with the optimal ratio was investigated, which was as low as 10–11 M. It is proved that MIL-101/Au composite nanoparticles have high sensitivity to probe molecules. When they are applied to the detection of persistent organic pollutants, the detection limit for fluoranthene can reach 10–9 M and for 3,3’,4,4’-tetrachlorobiphenyl (PCB-77) can reach 10–5 M.
The purpose of this article is to determine the equitability of airport and university allocations throughout Ethiopian regional states based on the number of airports and institutions per 1 million people. According to the sample, the majority of respondents believed that university allocation in Ethiopia is equitable. In contrast, the majority of respondents who were asked about airports stated that there is an uneven distribution of airports across Ethiopia’s regional states. Hence, both interviewees and focus group discussants stated that there is a lack of equitable distribution of universities and airports across Ethiopia’s regional states. This paper contributes a lesson on how to create a comprehensive set of determining factors for equitable infrastructure allocation. It also provides a methodological improvement for assessing infrastructure equity and other broader implications across Ethiopian regional states.
Salicylaldehyde imine transition metal catalyst is a kind of olefin polymerization catalyst that is widely used in the coordination of salicylaldehyde imine ligand and pre-transition metal. Salicylaldehyde imine ligands have the characteristic of easily inserting different substituents via organic synthesis. Therefore, the regulation of the polymerization activity, polymerization product, and product distribution can be achieved by changing the steric hindrance effect, the electronic effect, and the number of metal active sites near the catalytic active center. The development status of the transition metal catalyst of salicylaldehyde imide was summarized in this paper. The influence of the ligand structure of the salicylaldehyde imide transition metal catalyst on the catalytic performance, which involved the high selectivity of ethylene trimerization, ethylene/α-olefin, polar monomer copolymerization, ethylene polymerization production, ultra-high molecular weight polyethylene, and many other areas of olefin polymerization, was elaborated, providing references for further study and industrial applications of this catalyst.
New telechelic polymers functionalized with terminal ethyl xanthate or vinyl groups were synthesized via cationic ring-opening polymerization (CROP). The polymerization of 2-ethyl-2-oxazoline (Etoxa) and 2-methoxycarbonylethyl-2-oxazoline (Esteroxa) was initiated by 1,4-trans-dibromobutene in acetonitrile at 78 ℃, with termination using either potassium ethyl xanthate or 4-vinylbenzyl-piperazine. Structural characterization by 1H and 13C NMR and FTIR spectroscopy confirmed the telechelic architecture. 1H NMR analysis revealed degrees of polymerization (DP) of 24–29 for ethyl xanthate-terminated polymers and 22–23 for vinyl-terminated polymers, consistent with theoretical values. The molar compositions of Etoxa and Esteroxa in all telechelic polymers matched the initial monomer feed ratios. End-group functionalization efficiency was quantified as follows: Ethyl xanthate-terminated polymers: 64%–82%, and vinyl-terminated polymers: 69% and 98% (for respective batches).
In this paper, a solar tracking device that can continuously track the sun by adjusting the direction and angle of the solar panel in real time is designed and fabricated to improve the power generation efficiency of the solar cell panel. The mechanical parts as well as the automatic control part of the passive sun-tracking system are described, and the efficiency enhancement with the sun-tracking solar panel is characterized in comparison with the fixed panel system. The test results show that in the spring season in Qingdao city of eastern China, the sun-tracking system can improve the solar cell power generation efficiency by 28.5%–42.9% when comparing to the direction and elevation angle fixed system in sunny days. Even in partly cloudy days, the PV power output can increased by 37% with using the passive sun-tracking system. Economic analysis results show the cost-benefit period is about 10 years, which indicates that the passive sun tracking device can substantially contribute to the solar energy harvest practices.
Copyright © by EnPress Publisher. All rights reserved.