Diamond-like Nanocomposites (DLN) is a newly member in amorphous carbon (a:C) family. It consists of two or more interpenetrated atomic scale network structures. The amorphous silicon oxide (a:SiO) is incorporated within diamond-like carbon (DLC) matrix i.e. a:CH and both the network is interpenetrated by Si-C bond. Hence, the internal stress of deposited DLN film decreases remarkably compare to DLC. The diamond-like properties have come due to deform tetrahedral carbon with sp3 configuration and high ratio of sp3 to sp2 bond. The DLN has excellent mechanical, electrical, optical and tribological properties. Those properties of DLN could be varied over a wide range by changing deposition parameters, precursor and even post deposition treatment also. The range of properties are: Resistivity 10-4 to 1014 Ωcm, hardness 10–22 GPa, coefficient of friction 0.03-0.2, wear factor 0.2-0.4 10-7mm3/Nm, transmission Vis-far IR, modulus of elasticity 150-200 GPa, residual stress 200-300 Mpa, dielectric constant 3-9 and maximum operating temperature 600°C in oxygen environment and 1200°C in O2 free air. Generally, the PECVD method is used to synthesize the DLN film. The most common procedures used for investigation of structure and composition of DLN films are Raman spectroscopy, Fourier transformed infrared spectroscopy (FTIR), HRTEM, FESEM and X-ray photo electron spectroscopy (XPS). Interest in the coating technology has been expressed by nearly every industrial segment including automotive, aerospace, chemical processing, marine, energy, personal care, office equipment, electronics, biomedical and tool and die or in a single line from data to beer in all segment of life. In this review paper, characterization of diamond-like nanocomposites is discussed and subsequently different application areas are also elaborated.
Metal organic framework is a class of hybrid network of supramolecular solid materials comprised of a large number of inorganic and organic linkers all bounded to metal ions in a well-organized fashion. This type of compounds possess a greater surface area with an advantage of changing pore sizes, diversified and beautiful structure which withdrew an intense interest in this field. In the present review articles, the structural aspects, classification, methods of synthesis, various factors affecting the synthesis and stability, properties and applications have been discussed. Recent advances in the field and new directions to explore the future scope and applications of MOFs have been incorporated in this article to provide current status of the field.
Asian Infrastructure Investment Bank’s president Mr. Jin Liqun shares with JIPD Editor-in-Chief, Dr. Gu Qingyang, his passion for infrastructure finance, as he reflects upon his goal of steering an environmentally friend and corruption-free AIIB toward building social-impacting infrastructure across Asia.
From governmental departments to international financial institutes, Mr. Jin Liqun has undertaken almost every essential role in finance. With his vast experience across the private and public sectors, particularly in multilateral development banks, Mr. Jin Liqun currently serves as Asian Infrastructure Investment Bank (AIIB)’s first President since its founding in 2016, following a stint as Secretary-General of the Multilateral Interim Secretariat created to establish the bank. Beginning from his two decades of governmental experience at the Chinese Ministry of Finance, rising from the rank of Deputy Director General to Vice Minister, Mr. Jin was then called to serve as Vice President, and then Ranking Vice President, of the Asian Development Bank, and later as Alternate Executive Director for China at the World Bank and at the Global Environment Facility. Mr. Jin had also served as Chairman of China International Capital Corporation Ltd., China’s first joint-venture investment bank, in addition to serving as Chairman of the Supervisory Board of the sovereign wealth fund China Investment Corporation and as Chairman of the International Forum of Sovereign Wealth Funds.
In this paper, an improved mathematical model for flashover behavior of polluted insulators is proposed based on experimental tests. In order to determine the flashover model of polluted insulators, the relationship between conductivity and salinity of solution pollution layer of the insulator is measured. Then, the leakage of current amplitude of four common insulators versus axial, thermal conductivity and arc constants temperature was determined. The experimental tests show that top leakage distance (TLd) to bottom leakage distance (BLd) ratio of insulators has a significant effect on critical voltage and current. Therefore, critical voltage and current were modeled by TLd to BLd ratio Index (M). Also, salinity of solution pollution layer of the insulators has been applied to this model by resistance pollution parameter. On the other hand, arc constants of each insulator in new model have been identified based on experimental results. Finally, a mathematical model is intended for critical voltage against salinity of solution pollution layer of different insulators. This model depends on insulator profile. There is a good agreement between the experimental tests of pollution insulators obtained in the laboratory and values calculated from the mathematical models developed in the present study.
In casting industries, issue of spent molding sand disposal is the origin of molding sand reclamation. Among from all reclamation concepts the thermal reclamation method is better for no-bake sand system. This study focuses on the evaluation of sand quality by considering physical and chemical characteristics of molding sand, which is reclaimed by thermal reclamation method. Electric fuel and fluidization mechanism is used in thermal reclamation system. Effect of reclamation temperature, soaking period and sand quantity on % reclamability, grain size, ADV and on LOI is investigated. The average grain size, low ADV, low LOI and acceptable % reclamability of thermally reclaimed sand are studied.
In recent years, the foundry sector has been showing an increased interest in reclamation of used sands. Grain shape, sieve analysis, chemical and thermal characteristics must be uniform while molding the sand for better casting characteristics. The problem that tackled by every foundry industry is that of processing an adequate supply of sand which has the properties to meet many requirements imposed upon while molding and core making. Recently, fluidized bed combustors are becoming core of ‘clean wastes technology’ due to their efficient and clean burning of sand. For proven energy efficient sand reclamation processing, analysis of heating system in fluidized bed combustor (FBC) is required. The objective of current study is to design heating element and analysis of heating system by calculation of heat losses and thermal analysis offluidized bed combustorfor improving efficiency.
Copyright © by EnPress Publisher. All rights reserved.