Protein- and peptide-based medications are recognized for their effectiveness and lower toxicity compared to chemical-based drugs, making them promising therapeutic agents. However, their application has been limited by numerous delivery challenges. Polymeric nanostructures have emerged as effective tools for protein delivery due to their versatility and customizability. Polymers’ inherent adaptability makes them ideal for meeting the specific demands of protein-delivery systems. Various strategies have been employed, such as enzyme inhibitors, absorption enhancers, mucoadhesive polymers, and chemical modifications of proteins or peptides. This study explores the hurdles associated with protein and peptide transport, the use of polymeric nanocarriers (both natural and synthetic) to overcome these challenges, and the techniques for fabricating and characterizing nanoparticles.
Despite the existence of a voluminous body of literature covering the impact of infrastructure public-private partnerships (PPPs) on public value within the context of Western countries, scant attention has been paid to this topic in the Middle East. Given that the region has hosted numerous PPP projects that were implemented even without the rudimentary legal and regulatory frameworks considered essential for such projects to succeed, a study of PPPs within that region would thus be particularly useful, since an unpacking of the success factors for PPPs in the Middle East can reveal important practical insights that will advance the knowledge of PPP success factors overall. This paper, therefore, explores the rehabilitation and expansion of Jordan’s Queen Alia International Airport via the PPP route. It finds that the factors contributing to the project’s successful implementation can be categorized into those on the macro level related to political support, and the micro level factors concerned with management of daily activities involved in the partnership between the public and private sectors.
Cardiovascular imaging analysis is a useful tool for the diagnosis, treatment and monitoring of cardiovascular diseases. Imaging techniques allow non-invasive quantitative assessment of cardiac function, providing morphological, functional and dynamic information. Recent technological advances in ultrasound have made it possible to improve the quality of patient treatment, thanks to the use of modern image processing and analysis techniques. However, the acquisition of these dynamic three-dimensional (3D) images leads to the production of large volumes of data to process, from which cardiac structures must be extracted and analyzed during the cardiac cycle. Extraction, three-dimensional visualization, and qualification tools are currently used within the clinical routine, but unfortunately require significant interaction with the physician. These elements justify the development of new efficient and robust algorithms for structure extraction and cardiac motion estimation from three-dimensional images. As a result, making available to clinicians new means to accurately assess cardiac anatomy and function from three-dimensional images represents a definite advance in the investigation of a complete description of the heart from a single examination. The aim of this article is to show what advances have been made in 3D cardiac imaging by ultrasound and additionally to observe which areas have been studied under this imaging modality.
Copyright © by EnPress Publisher. All rights reserved.