In this paper, we deal with one of the most urgent and relevant topics nowadays, i.e., water pollution. The problem is finding a valid candidate for the absorption and removal of different kinds of pollutants commonly found in water. There are already some indications about graphene oxide as a potential candidate. In the present work, we take a step forward to show how graphene nanoplatelets (rather than the oxide form of this material) are capable of decontaminating water. In this starting step, we use a specific substance as a model pollutant, i.e., acetonitrile, leaving for the future steps, to extend the analysis to additional types of pollutants. In addition to laboratory-produced graphene nanoplatelets, we already examined in the past; now we wish to consider also commercially available ones, so that the new results will not be bound to a laboratory (low technology readiness level) material, but will become interesting also from the industrial point of view, thanks to the scalability of the nanoplatelets production. For this aim, we compare the performance of two types of filters based on two classes of nanomaterials, i.e., those produced by microwave and ultrasound assisted exfoliation, already analyzed in our earlier works, with those commercially distributed by an Italian company, i.e., NANESA, http://www.nanesa.com/. The latter is an innovative SME involved in the production of graphene-based nanomaterials. We focus here in the graphene nanoplatelets, commercially available in industrial batches (GXNan grades). The present study leads to determine which filtering membrane, among the various types of commercial graphene considered, shows the greatest stability, and the lack of breakage of the membrane, concentrating on such accessory features, given that all types of graphene showed excellent adsorption properties.
Hospital waste containing antibiotics is toxic to the ecosystem. Ciprofloxacin is one of the essential, widely used antibiotics and is often detected in water bodies and soil. It is vital to treat these medical wastes, which urge new research towards waste management practices in hospital environments themselves. Ultimately minimizes its impact in the ecosystem and prevents the spread of antibiotic resistance. The present study highlights the decomposition of ciprofloxacin using nano-catalytic ZnO materials by reactive oxygen species (ROS) process. The most effective process to treat the residual antibiotics by the photocatalytic degradation mechanism is explored in this paper. The traditional co-precipitation method was used to prepare zinc oxide nanomaterials. The characterization methods, X-Ray diffraction analysis (XRD), Fourier Transform infrared spectroscopy (FTIR), Ulraviolet-Visible spectroscopy (UV-Vis), Scanning Electron microscopy (SEM) and X-Ray photoelectron spectroscopy (XPS) have done to improve the photocatalytic activity of ZnO materials. The mitigation of ciprofloxacin catalyzed by ZnO nano-photocatalyst was described by pseudo-first-order kinetics and chemical oxygen demand (COD) analysis. In addition, ZnO materials help to prevent bacterial species, S. aureus and E. coli, growth in the environment. This work provides some new insights towards ciprofloxacin degradation in efficient ways.
The rare earth mining area in South China is the main production base of ionic rare earth in the world, which has brought inestimable economic value to the local area and even the whole nation. However, due to the lack of mining technology and excessive pursuit for economic profits, a series of environmental problems have arisen, which is a great threat to the ecosystem of the mining area. Taking Lingbei rare earth mining area in Ganzhou as an example, this paper discriminated and analyzed such aspects as the ecological source, ecological corridor and ecological nodes of the mining area based on the landscape ecological security pattern theory and the minimum cumulative resistance model (MCR) method, and constructed a landscape ecological security pattern of the mining area during the 2009, 2013 and 2018. The results show that: i) The patch area of the ecological source of rare earth mining area is small, mainly concentrated in the east and west sides of the mining area. ii) During the selected year, the ecological source area, ecological corridors, radiation channels and the number of ecological nodes in the rare earth mining area are increasing, indicating that the landscape ecological security of the rare earth mining area has been improved to some extent, but it remains necessary for relevant departments to make a optimized planning to further reconstruct the ecological security pattern of the rare earth mining area.
Landscape architects, who guide planning and design decisions by understanding the socio-cultural expectations, functional needs, and social behaviors of the community, create ideal spaces for people by integrating natural, social, cultural, and aesthetic factors with a holistic design approach in urban public areas. Public open green spaces are important urban areas that have a positive impact on people’s physical, mental, and emotional health. In this context, the concept of personal space, its impact on individuals, and related perception studies have been examined. In landscape design, criteria that affect individuals’ personal space distances and personal space perceptions have been identified, providing a basis for sustainable landscape design projects in public open and green spaces.
Copyright © by EnPress Publisher. All rights reserved.