This study investigates the dynamic landscape of agritourism in Thailand, emphasizing innovations, challenges, and policy implications in the post-COVID-19 era. Employing a qualitative approach, including a comprehensive literature review and semi-structured interviews with stakeholders, the research identifies key agritourism models, such as immersive learning experiences, technology-driven agritourism, and unconventional practices like salt and coconut plantations. Findings reveal that agritourism has adapted to shifting market demands through diversification, technological integration, and a heightened focus on sustainability. Notably, technology adoption in precision farming and hydroponics enhances resource efficiency and visitor engagement, while initiatives like rice paddy field tourism and highland agritourism showcase the cultural and ecological richness of rural landscapes. The study underscores the critical role of policy frameworks, infrastructure development, and community empowerment in fostering sustainable agritourism practices. Key policy recommendations include targeted subsidies, capacity-building programs, and harmonized regulatory frameworks to address challenges such as financial constraints, regulatory ambiguities, and inadequate infrastructure. This research contributes to the broader discourse on sustainable tourism and rural development, aligning agritourism with the United Nations Sustainable Development Goals (SDGs). By synthesizing insights on innovation, resilience, and sustainability, this study offers a comprehensive roadmap for policymakers, practitioners, and academics to leverage agritourism as a vehicle for rural revitalization and global sustainability. Future research directions are proposed to explore the long-term impacts of technological integration, community empowerment, and resilience strategies in agritourism.
This study investigates the performance assessment of methanol and water as working fluid in a solar-powered vapour absorption refrigeration system. This research clarifies the system’s performance across a spectrum of operating conditions. Furthermore, the HAP software was utilized to determine and scrutinize the cooling load, facilitating a comparative analysis between software-based results and theoretical calculations. To empirically substantiate the findings, this research investigates methanol-water as a superior refrigerant compared to traditional ammonia- water and LiBr-water systems. Through experimental analysis and its comparison with previous research, the methanol-water refrigeration system demonstrated higher cooling efficiency and better environmental compatibility. The system’s performance was evaluated under varying conditions, showing that methanol-water has a 1% higher coefficient of performance (COP) compared to ammonia-water systems, proving its superior effectiveness in solar-powered applications. This empirical model acts as a pivotal tool for understanding the dynamic relationship between methanol concentration (40%, 50%, 60%) and system performance. The results show that temperature of the evaporator (5–15 ℃), condenser (30 ℃–50 ℃), and absorber (25 ℃–50 ℃) are constant, the coefficient of performance (COP) increases with increase in generator temperature. Furthermore, increasing the evaporator temperature while keeping constant temperatures for the generator (70 ℃–100 ℃), condenser, and absorber improves the COP. The resulting data provides profound insights into optimizing refrigerant concentrations for improved efficiency.
This study, through the method of canonical correlation analysis, revealed significant correlations between various dimensions of learning attitudes of students and various dimensions of teacher knowledge. An analysis of data from a group of 221 high school students showed that teacher knowledge of teaching content, theoretical knowledge, and teaching practice and classroom management significantly impact learning attitudes of students. Specifically, teacher knowledge of teaching content plays a crucial role in promoting students' behavioral inclination to learn chemistry, teachers' theoretical knowledge significantly enhances students' liking for chemistry laboratory courses, while teachers' teaching practice and classroom management have a suppressive effect on students' evaluative beliefs about school chemistry. The results of this study provide effective guidance for both the theory and practice of high school chemistry education.
Heat transfer enhancement (HTE) is a topic of everlasting importance in thermal engineering research. The latest focuses in this field are on nanosolutions for more efficient thermal transmission fluids (a) and designs of metallic foams (b) Metallic foams provide extended surfaces for HTE and possess advantages such as a high value of Cp, high thermal conductivity (TC) and being light weight. nanosolutions, on the other hand, can be used as an efficient HT medium as they exhibit higher TCs in comparison to base fluids. This review paper summarizes the physical properties of nanosolutions and or within the metal foam, focusing on HT and flow properties of nanosolutions, metal foam and combined NS-metal foam systems. The inspiration novelty for this review is the basic transference identifications for the HT enhancement of nanosolutions in porous media. The aim of the work is to provide insight on how nanosolutions in conjunction with porous media can be useful for HTE.
This study explores the influence of human resource empowerment on the establishment of green human resource management (GHRM) within Tehran’s 14th district municipality. Utilizing a descriptive-analytical research approach, the study targets the practical implications of empowerment strategies on GHRM implementation. The research population consists of 1500 employees from the 14th district, based on the 2017 census. A sample of 306 respondents was selected using Morgan’s table. Data were collected via a structured questionnaire developed from the study’s conceptual framework and research hypotheses. The questionnaire’s validity and reliability were confirmed through expert review and Cronbach’s alpha (0.9). Descriptive statistics outline the background and primary variables, while inferential statistics, particularly the Pearson correlation test, were used to evaluate the hypotheses. Results indicate that human resource empowerment positively affects the establishment of GHRM in Tehran’s 14th district municipality.
Every production day in Nigeria, and in other oil producing countries, millions of barrels of produced water is generated. Being very toxic, remediation of the produced water before discharge into environment or re-use is very essential. An eco-friendly and cost effective approach is hereby reported for remediative pre-treatment of produced water (PW) obtained from Nigerian oilfield. In this approach, Telfairia occidentalis stem extract-silver nanoparticles (TOSE-AgNPs) were synthesized, characterized and applied as bio-based adsorbent for treating the PW in situ. The nanoparticles were of average size 42.8 nm ± 5.3 nm, spherical to round shaped and mainly composed of nitrogen and oxygen as major atoms on the surface. Owing to the effect of addition of TOSE-AgNPs, the initially high levels (mg/L) of Total Dissolved Solids (TDS), Biological Oxygen Demand (BOD) and TSS of 607, 3.78 and 48.4 in the PW were reduced to 381, 1.22 and 19.6, respectively, whereas DO and COD improved from 161 and 48.4 to 276 and 19.6 respectively, most of which fell within WHO and US-EPA safe limits. Particularly, the added TOSE-AgNPs efficiently removed Pb (II) ions from the PW at temperatures between 25 ℃ to 50 ℃. Removal of TOSE-AgNPs occurred through the adsorption mechanism and was dependent contact time, temperature and dose of TOSE-AgNPs added. Optimal remediation was achieved with 0.5 g/L TOSE-AgNPs at 30 ℃ after 5 h contact time. Adsorption of Pb (Ⅱ) ions on TOSE-AgNPs was spontaneous and physical in nature with remediation efficiency of over 82% of the Pb (Ⅱ) ions in solution. Instead of discarding the stem of Telfairia occidentalis, it can be extracted and prepared into a new material and applied in the oilfield as reported here for the first time.
Copyright © by EnPress Publisher. All rights reserved.