This study examined the impact of aluminium doping on the structural, electrical, and magnetic properties of Li(0.5)Co(0.75)AlxFe(2−x)O4 spinel ferrites (x =0.15 to 0.60). The samples were synthesised using the sol-gel auto-combustion technique, and they were examined using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), dielectric measurements, and vibrating sample magnetometry (VSM). All samples possessed a single-phase cubic spinel structure with Fd-3m space group, according to XRD analyses. SEM images showed the creation of homogeneous particles with an average size of about 21 nm. All samples had spinel ferrite phases, confirmed from FTIR spectra. DC electrical conductivity studies showed that the conductivity increased with increasing aluminium content up to x = 0.45 before dropping at x = 0.60. The maximum saturation magnetization value was found at x = 0.45, according to VSM measurements, which demonstrated that the magnetic characteristics were strongly correlated with the amount of aluminium.
Cobalt-based sulfides have emerged as promising candidates for next-generation high-performance anode materials for lithium-ion batteries (LIBs) due to their high theoretical specific capacity and reversible conversion reaction mechanisms. However, their practical application is hindered by volume expansion effects and relatively low rate performance. Guided by theoretical principles, this study synthesizes nanoscale Bi/CoS-C and Bi/Co4S3-C (denoted as Bi/CS-C) composite materials using Co and Bi2S3 as precursors via a solid-state ball milling method. The electrochemical properties of these materials were systematically investigated. When employed as anodes for LIBs, Bi/CoS-C and Bi/CS-C exhibit excellent rate capabilities. At current densities of 0.1, 0.5, 1, 4, and 10 A/g, the reversible capacities of Bi/CoS-C were 939.2, 730.7, 655.6, 508.1, and 319 mAh/g, respectively. In contrast, Bi/CS-C exhibited reversible capacities of 760.4, 637.6, 591.9, 484.3, and 295.4 mAh/g, respectively. Moreover, Co4S3, as an active component, enables superior long-cycle performance compared to CoS. After 300 cycles at 0.2 A/g, the Bi/CoS-C and Bi/CS-C electrodes retained capacities of 193.1 and 788.8 mAh/g, respectively. This study demonstrates that nanostructure design and carbon-based composite materials can effectively mitigate the volume expansion issue of cobalt-based sulfides, thereby enhancing their rate performance and cycling stability. This strategy provides new insights for the development of high-performance anode materials for lithium-ion batteries and is expected to accelerate their practical application in next-generation energy storage devices.
The rapid expansion of smart cities has led to the widespread deployment of Internet of Things (IoT) devices for real-time data collection and urban optimization. However, these interconnected systems face critical cybersecurity risks, including data tampering, unauthorized access, and privacy breaches. This paper proposes a blockchain-based framework designed to enhance the security, integrity, and resilience of IoT data in smart city environments. Leveraging a private blockchain, the system ensures decentralized, tamper-proof data storage, and transaction verification through digital signatures and a lightweight Proof of Work consensus mechanism. Smart contracts are employed to automate access control and respond to anomalies in real time. A Python-based simulation demonstrates the framework’s effectiveness in securing IoT communications. The system supports rapid transaction validation with minimal latency and enables timely detection of anomalous patterns through integrated machine learning. Evaluations show that the framework maintains consistent performance across diverse smart city components such as transportation, healthcare, and building security. These results highlight the potential of the proposed solution to enable secure, scalable, and real-time IoT ecosystems for modern urban infrastructures.
The purpose of the study is to create proposals and recommendations to improve the system evaluating the quality of governance and efficient use of budget funds in order to improve public welfare and sustainable development. The research methodology included application of statistical methods to review scientific articles, legislative acts and other documents, study models for evaluating the quality of governance and efficient use of budget funds. Mathematical modeling and forecasting methods were also used to assess aspects of governance and predict the results when changes are made, including building a trend model and determining the forecast values of accrued taxes and mandatory payments for 2024–2026. The conclusions highlight there is a positive correlation between the accrued taxes and mandatory payments to the budget of the Republic of Kazakhstan, and an economic growth and changes in tax legislation. The key factors influencing the quality of governance and efficient use of budget funds were identified. Recommendations were developed to improve the quality assessment system and governance of budget funds in order to increase efficiency and responsibility in financial management. The results of the study can be used by public administration bodies and financial institutions to optimize the governance of budget funds.
Academic integrity has been at the centre of the discussion of the adoption of Chat GPT by academics in their research. This study explored how academic integrity mitigates the desire to use ChatGPT in academic tasks by EFL Pre-service teachers, in consideration of the time factor, perceived peer influence, academic self-effectiveness, and self-esteem. The study utilized web-based questionnaires to elicit data from 300 EFL Pre-service teachers across educational fields drawn from different schools across the world. Analysis was conducted using relevant statistical measures to test the projected four hypotheses. The findings provide evidence in support of Hypothesis 1, with a statistically significant path coefficient (β) of 0.442, a t-value of 3.728, and a p-value of 0.000. The hypothesis acceptance implies that when academic integrity improves, the impact of the time-saving aspect of the use of ChatGPT Across educational fields study decreases. This suggests that EFL Pre-service teachers who have a firm dedication to academic honesty are less influenced by the tempting appeal of ChatGPT’s time-saving features, highlighting the ethical factors that influence their decision-making. The data also provide support for Hypothesis 2, indicating a substantial inverse relationship with a path coefficient (β) of 0.369, a t-value of 5.629, and a p-value of 0.001. These findings indicate that stronger adherence to academic integrity is linked to a diminished effect of colleagues on the choice to use ChatGPT in Academic tasks. The results suggest that a firm dedication to academic honesty serves as a protective barrier against exogenous pressures or influences from colleagues when it comes to embracing cutting-edge technology. However, in general, these findings revealed there was a negative association between academically related factors (e.g., time factor, sense of peer pressure, language study self-confidence, and academic language competence), as well as an attitude toward adoption of ChatGPT and commitment towards academic integrity.
Copyright © by EnPress Publisher. All rights reserved.