In the last few decades, nano-electronic devices have been manufactured using VLSI technology. Over the past four decades, IC technology has been growing by using CMOS technology successfully, but this CMOS technology has a scaling limitation. To overcome this scaling limitation, QCA (quantum dot cellular automata) emerges as an alternative. This work is the implementation of the design of a polar encoder using QCA technology. This design is a single-layered and even bottom-up approach technique. The Polar code is more efficient and has less energy dissipation compared to the turbo code and conventional codes (CC). This design explores (8:4). A Polar encoder is designed to have fewer cells and area compared to the turbo encoder and conventional encoder. The proposed design is implemented using the QCA designer tool.
Broad-spectrum antibiotics, such as tetracyclines, are used to treat and manage a range of infectious disorders. Since the kidneys are the primary organs responsible for excreting tetracyclines, clinicians should refrain from prescribing them to patients who have renal failure. Tetracyclines are one of the clinical waste products of today. One of the biggest problems in the field of pollution of the environment today is the persistence of different pharmaceutical residues, drug residues, pesticides, and metal ion species of the new-generation pollutants in surfaces and groundwater. In the present work, carboxymethyl cellulose (CMC)-CuO nanoparticles (CMC-CuO NPs) were synthesized using CuO NPs within different amounts of CMC (0.5, 1.0, 1.5 and 2.0 g) at 85 °C. The synthesized nanoparticles were characterized by XRD, FT IR, SEM, and TG-DTA analysis. According to XRD and SEM, the crystallize size and morphology influenced the dosage of CMC. FT-IR analysis confines the layer of CMC to the CuO nanoparticle surface. TG-DTA results indicated that the CMC content of CMC-CuO NPs was between the range of 69% and 75% by weight. The effects of some parameters such as initial concentration, pH, adsorbent dosage, and contact time on the adsorption of tetracycline from aqueous model solutions on CMC-CuO NPs were investigated with batch studies. It was found that the removal of tetracycline was obtained about 80% with optimized parameters of 10 mg/L concentration, 180 min contact time, 5 pH, and 0.3 g/25 mL dose. The synthesized CMC-CuO NPs nanocomposite may be a promising material for the removal of tetracycline in environmental pollution and toxicology.
Beta macrocarpa, Guss is an interesting species showing very low germination rates. The leading objectives of this work were to investigate the dormancy mechanism and to find methods to break dormancy in order to achieve rapid, uniform and high germination. Macro and micro-morphologic analyses were performed by stereo microscopy and scanning electron microscopy showed two fruit coats. The yellow external coat or persistent perianth coat (PPC) was accrescent with 5 erect segments contiguous to the operculum of the seed capsule. This coat forms spongy layers (50 to 300 µm thick) that could be eliminated manually. The narrow internal coat or pericarp or achene coat (AC) forms woody joined seed capsules, each presenting a pressed operculum that cannot be manually opened. This coat was not adherent to seeds and was composed of compressed cells (50 to 200 µm thick) which form pockets for salt cristal. Seeds were lentiform (1 to 2 mm diameter and 0.5 to 0.8 mm thick) and highly fragile. The embryo was whitish surrounded peripherally by the perisperm with two highly developed cotyledons and radical. Polyphenol concentrations in both coats showed that after 4 months of collection, total polyphenol concentrations were 4-fold higher in the pericarp than in the persistent perianth. However, after one year, this parameter decreases significantly in the pericarp, whereas, it increases to a larger extent in the perianth. Different germination tests indicated that the pericarp provides a chemical and a physical resistance to seed germination during the first 4 months of the experiment after collection. The chemical dormancy was released to higher levels of total polyphenol compounds that inhibited seed germination and seedling growth. However, the physical dormancy was associated with the hardness of this intern coat which caused a mechanical resistance to radicle emergence. After one year of storage, total polyphenol pericarp concentration decreased notably, and chemical resistance disappeared, whereas the physical one persisted. Consequently, one year of storage pericarp removal is sufficient to break this exogenous dormancy.
With the purpose of identifying the characteristics of variation in fruit size and seed production (potential and efficiency) of Cedrela odorata L. between sites and progenies established in the ejido La Balsa, municipality of Emiliano Zapata, Veracruz, fruits were harvested from 20 trees in February 2013, preserving the identity of each one. Fruit length and width were measured, seed was extracted and developed and aborted seeds were counted to calculate Seed Production Potential (SPP) and Seed Efficiency (SE). The results showed significant differences between sites and between progenies and for fruit length between sites. The mean values found were: 32.52 mm (fruit length), 18.73 mm (fruit width), 39.9 seeds per fruit (SPP) and 57.51% (SE). The seed of this species for its use should be selected taking into account the production characteristics of crops and outstanding individual trees, in addition, due to the current regulatory restrictions on seed collection, the establishment of trials and plantations for germplasm production is a viable option for forest management of the species.
Dormancy is a state of lack of germination/sprouting in seed/tuber although required conditions (temperature, humidity, oxygen and light) are provided. Dormancy is based on hard seed coat dormancy or lack of supply and activity of enzymes (internal dormancy) necessary for germination/sprouting. Dormancy is an important factor limiting production in many field crops. Several physical and chemical pretreatments to production material (seed/tuber) are carried out for overcoming dormancy. Physical and physiological dormancy can be found together in some plants and this event makes it difficult to provide high frequency healthy seedling growth. Whereas, emerging of all production material (seed, tuber) sown/planted and forming healthy seedling are prerequisites of plant production.
Copyright © by EnPress Publisher. All rights reserved.