Objective: To study the changes of growth, physiological and absorption characteristics of Pinus bungeana under ozone (O3) stress, to elucidate the correlations among the indicators, and to determine its degree of response to O3. Methods: The growth, physiological characteristics and O3 uptake capacity of Pinus bungeana seedlings were measured in an open-top O3 fumigation manual control experiment with three concentration gradients (NF: normal atmospheric O3 concentration, NF40: normal atmospheric O3 concentration plus 40 nmlol/mol; NF80: normal atmospheric O3 concentration plus 80 nmol/mol), and the relationships between the characteristics of Pinus bungeana under different O3 concentrations were investigated with correlation analysis, redundancy analysis and analysis of variance. Results: (1) Plant height growth (ΔH), diameter growth at 50 cm (ΔDBH), stomatal size (S), stomatal density (M), stomatal opening (K), stomatal conductance (Gs), net photosynthetic rate (Pn), transpiration rate (Et), water use efficiency (WUE), maximum photochemical efficiency (Fv/Fm), chlorophyll content (CHL), whole tree water consumption (W), and O3 uptake rate () all decreased with the increase of O3 concentration; while intercellular CO2 concentration () and relative conductivity (L) increased with the increase of O3 concentration; (2) growth indicators of Pinus bungeana under O3 stress (ΔH, ΔDBH) were the most correlated with O3 uptake status (, W), followed by photosynthetic indicators (, WUE, ,, ) and growth indicators (ΔH, ΔDBH) and stomatal characteristics (K, M, S) under O3 stress, some physiological indicators (L, ) were relatively weakly correlated with photosynthesis (, WUE,,, ) and stomatal (K, M, S); (3) all the indicators of Pinus bungeana were significantly different under O3 treatments of NF and NF80 (P < 0.05), ΔH, ΔDBH, M, CHL, , , W and were most significantly different under NF and NF40 treatments, and K, S, WUE, , , , L were more significantly different under NF40 and NF80 treatments. Conclusion: The experiment proved that the growth of Pinus bungeana was slowed, photosynthetic capacity was reduced, and the absorption capacity of O3 was further reduced by long-term exposure to high concentration of O3. The growth of Pinus bungeana was most correlated with the changes of O3 absorption characteristics, and the stomatal characteristics were most correlated with photosynthetic physiological characteristics, and the reduction of photosynthetic capacity etc. further led to the curtailment of its growth.
Studies show that the COVID-19 crisis may threaten to attain sustainable development goals connected with shelter in developing countries, including Malaysia. Low-cost housing provision has been identified as one tool for achieving sustainability goals via synergistic operations. However, studies about post-COVID-19 housing and sustainable development goals integration are scarce in Malaysia. The study investigated the state of post-COVID-19 housing and developed a framework to integrate Goals in housing provision in Malaysia. The study covered four major cities in Malaysia via qualitative research to achieve the study’s objectives. The researchers engaged forty participants via semi-structured virtual interviews, and saturation was achieved. The study utilized a thematic analysis for the collated data and honed them with secondary sources. Findings show that COVID-19 reduced the possibility of low-income earners becoming homeowners. This is because the low-income groups were real losers of COVID-19 economic changes. Also, findings reveal that achieving four Goals from the 17 Goals will improve housing provision in Malaysia’s post-COVID-19 era. The study encourages key housing stakeholders to improve housing delivery, especially for the low-income earners across Malaysia in the post-COVID-19 era. This will imply contributing to achieving four Goals because of the correlation, as part of the study’s implications.
Definitive diagnosis of Craniosynostosis (CS) with computed tomography (CT) is readily available, however, exposure to ionizing radiation is often a hard stop for parents and practitioners. Lowering head CT radiation exposure helps mitigate risks and improves diagnostic utilization. The purpose of the study is to quantify radiation exposure from head CT in patients with CS using a ‘new’ (ultra-low dose) protocol; compare prior standard CT protocol; summarize published reports on cumulative radiation doses from pediatric head CT scans utilizing other low-dose protocols. A retrospective study was conducted on patients undergoing surgical correction of CS, aged less than 2 years, between August 2014 and February 2022. Cumulative effective dose (CED) in mSv was calculated, descriptive statistics were performed, and mean ± SD was reported. A literature search was conducted describing cumulative radiation exposure from head CT in pediatric patients and analyzed for ionizing radiation measurements. Forty-four patients met inclusion criteria: 17 females and 27 males. Patients who obtained head CT using the ‘New’ protocol resulted in lower CED exposure of 0.32 mSv ± 0.07 compared to the prior standard protocol at 5.25 mSv ± 2.79 (p < 0.0001). Five studies specifically investigated the reduction of ionizing radiation from CT scans in patients with CS via the utilization of low-dose CT protocols. These studies displayed overall CED values ranging from 0.015 mSv to 0.77 mSv. Our new CT protocol resulted in 94% reduction of ionizing radiation. Ultra-low dose CT protocols provide similar diagnostic data without loss of bone differentiation in CS and can be easily incorporated into the workflow of a children’s hospital.
Zero-valent iron is a moderately reducing reagent that is both non-toxic and affordable. In the present work, iron nanoparticles were synthesized using bitter guard leaf extract (Momordica charantia L.) (BGL-Fe NP). Using leaf samples from bitter protectant extract, iron nanoparticles were synthesized with secondary metabolites such as flavonoids and polyphenols acting as capping and reducing agents. Polyphenols reduce Fe2+/Fe3+ to nanovalent iron or iron nanoparticles. Iron nanoparticles were synthesized by reducing iron chloride as a precursor with bitter protective leaf extract in an alkaline environment. The obtained BGL-Fe NPs were calcined for 4 h at various temperatures of 400 °C, 500 °C, and 600 °C. The obtained samples were coded as BGL-Fe NPs-4, BGL-Fe NPs-5, and BGL-Fe NPs-6, respectively. The synthesized BGL-Fe NPs were systematically characterized by XRD, SEM, FTIR, UV-Vis and TG-DTA analysis. The obtained BGL-Fe NPs were then used as an adsorbent to remove the aqueous solution of basic methylene blue (MB) dye. MB concentration was monitored using UV-Vis spectroscopy.
The objective of this study was to develop a model based on fuzzy rules to evaluate the effects caused by varying the dosages of two soil fertilizers (mineral and organic) on root diameter. Fuzzy logic is a method that presents a language, more appropriate to day-to-day life, as the sky is a bit cloudy. For the input variables of this system the mineral and an organic fertilizer were used, for the output the root diameter, in cm. After optimization of the input rules, it can be seen that for the application of the fertilizers (mineral and organic) the best dosages were from 15 to 60 and 20 to 60 g·m-2, respectively. With this application of fuzzy rules in real data, it is possible to take these benefits to those involved in the production chain of radish, resulting in a reduction in the dosages of products and improving its final profitability.
Copyright © by EnPress Publisher. All rights reserved.